
DOCUMENT RESUME

ED 135 377 IR 004 486

AUTHOR Francis, Larry
TITLE The Tutor Training Course: Lessons Learned.
INSTITUTION Illinois Univ., Urbana. Computer-Based Education

Lab.
SPONS AGENCY Advanced Research Projects Agency (DOD), Washington,

D.C.; National Science Foundation, Washington,
D.C.

PUB DATE 76
CONTRACT DABC-15-73-C-0077; US-NSF-C-723
NOTE 139p.

EDRS PRICE MF-$0.83 BC-$7.35 Plus Postage.
DESCRIPTORS *Computer Assisted Instruction; Computer Programs;

Ccmputers; *Instructional Design; Instructional
Materials; Instructional Systems; Instructional
Technology; On Line Systems; Programers; *Programing;
*Programing Languages; Training Objectives

IDENTIFIERS PLATO IV; Programmed Logic for Automatic Teaching
Operations; *TUTOR

ABSTRACT
The first formal author training course for the Tutor

programing language and the use of the PLATO system was designed and
conducted by the Military Training Centers (HTC) gro,up. The course
was developed according to thirteen cognitive and affective
principles, and was used over a period of three years to train
approximately 100 authors. This report contains a statement of the
principles and a descrifition of their implementation, including many
examples frcm course materials. It also recounts the highlights amd
turning points of the author training course, reviews the basis for
its modificaticn, and examintis the dilemmas encountered in teaching
new authors tc preparR computer-based instruction materials.
Techniques for resolving some of these dilemmas are suggested. Also
included is the course feedback from outside gkoups. This report is
directed to instructors of new authors, developers of author training
materials, and managers of computer-based instruction development
centers. (Authcr/SC)

***********At***
Docts acquired by ERIC include many informal unpublished

* materia.,s nct available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *
*'reproducibility are often encountered and this affects the quality *

* of the micrcfiche and hardcopy reproductions ERIC makes available *

* via the ERIC Document Reproduction Service (EDRS). EDRS is not
* respcnsible for the quality of the original document. Reproductions *
* supplied by IERS are the best that can be made from the original.
*****4***

Computer-based Education

Research Laboratory

University of Illinois

U S DEPARTMENT OF HEALTH,
EDUCATION a. WELFARE

NATIONAL INSTITUTE OF
EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTi Y AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN.
A I LNG IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INST ITO TE Or
EDUCATION POSITION OR POLICY

FAJ
ailLati.&44.4.41.8.L 11.41.4daLLIAL

Urbana Illinois

flU Strutz

THE TUTOR TRAINING COURSE

LESSONS LEARNED

LARRY FRANCIS

6")

THE TUTOR TRAINING COURSE: LESSONS LEARNED

Larry Francis

Illustrated by

Wayne Wilson

COMPUTER-BASED EDUCATION RESE,,ACH LABORATORY
UNIVERSITY OF ILLINOIS, Urbana-Champaign

e_3

Copyright 1976 by the Board of Trustees
of the University of Illinois

All rights reserved. No part of this book may be reproduced
in any form or by any means without permission in writing from
the author.

This research was supported in part by Advanced Research
Projects Agency of the Department of Defense under U.S. Army
Contract DAHC-15-73-C-0077 and indirectly by the National
Science Foundation (US NSF C-723).

sf.

". . . we wish to apologize to our women readers for our use,
in this book, of a sexist grammatical convention. We were unable
to find.or invent a stylistically graceful substitute for the pronouns
he and him in instances wherv we obviously mean to refer to both male
and female."

From Neil Postman and Charles Weingartner, The School Book (New York,
N.Y.: Dell Publishing Co., 1973), p. v.

;_)

Ii

Acknowledgement

Many people have contributed critiques, programming, advice, and

even whole lessons to the MTC training package. In addition to a great

deal of thanks to members of the current MTC and PEER group staffs

(Alec Himwich, Joe Klecka, Lynn Misselt, Eilaen Sweeney, Allen Avner,

and John Gilpin), I would like to thank many others for their role in

developing the training course and preparing this report. In the order

of their contribution, they are: Robert Bohn, David Meller, Daniel Hyde,

Craig Burson, Pauline Jordan, Mary Jane Hyde, James Kraatz, and Elaine

Avner.

I would also like to thank Kathy Geissler and Julie Garrard for

typing the manuscript and Wayne Wilson for providing illustrations.

6

Abstract

The Military Training Centers (MTC) Group created and taught

the first formal author training course for the TUTOR programming language

and the use of the PLATO system. The course was used over a period of

three years to train approximately 100 authors who spent two to three

weeks at the Computer-based.Education Research Laboratory (CERL) of the

University of Illinois at Urbana-Champaign. In general, the new authors

had little previous experience with computers or programmed instruction;

however, many wete classroom instructors.

Thirteen cognitive and affective principles guided the creation

of the author course; five were ponited originally, and the rest were

formulated based on e:43erience derived from teaching the course. This

_

report contains a statement of the principles and a description of their

implementation, including many examples from course materials. It also

recounts the highlights and turning points of the author training course,

reviews the basis for its modification, and examines the dilemmas

encountered in teaching new authors to prepare computer-based instruction

materials. Techniques for resolving some of these dilemmas are suggested.

The MTC training course was evaluated by examining the experience

of users outside of MTC. The opinions and recommendations of these

outside groups suggest that they found the materials valuable and effective,

This report is directed to instructors of new authors, developers of author

training materials, and managers of computer-based instruction development

centers.

Table of Contents

PaRe

Acknowledgement

Abstract
iii

Introduction 1

The Principles of'TUTOR Training 3

Overview 3

Objectives 4

Thirteen Principles 5

Implementation of the Principles 7

Principle 1--small segments 7

Principle 2--testing 7

Principle 3--demonstrate a need 7

Principle 4--intermix topics 9

Principle 5--se1f-pacIng 9

Principle 6--training in specialized subtopics 9

Principle 7--interactive reference manual 9

Principle 8--new concepts 9

Principle 9--discovery learning 10

Principle 10--making authors act as students 10

Principle 11--models of successful authors 10

Principle 12--advanced training 11

Principle 13--"half-baked" lessons 11

Development of the Materials 12

Author and Instructor Backgrounds 12

The First Attempt--Eight Statement TUTOR 14

Beyond Eight Statement TUTOR--A Description 17

Advanced TUTOR Training 20

Documented Drivers 2J

Calculation Training/Retraining 22

Data Collection 25

Other Advanced Training 26

Unresolved Teaching Dilemmas 27

Dilemma 1--How to Deliver Advanced Training 27

Dilemma 2--When to Teach Documentation 28

Dilemma 3--Taxonomies in TUTOR Training 29

Dilemma 4--How NOT to Pass on Experience 31

Teaching TUTOR in an Environment of an Evolving Language 34

Evaluation 37

APPendix I: The Programming Problems to accompany the MTC Author
Training Course

Appendix II: Examples of the Programming Problem Tets to accompany
the MTC Author Training Course

Appendix III: Lesson "tutor"

Appendix IV: Excerpts from "Documented Matchinz, Drill"

Appendix V: Summary of TUTOR Training Materials Available--January 1976

Appena!x VI: The Use of Iniexed Variables by Authors

Appendix VII: Training Standards for Basic TUTOR

1

Introduction

During the past four years, the Military Training Centers (MIC)

Group has created and used a set of training materials for teaching

basic TUTOR to new authors at ARPA/PLATO sites. The purpose of the

training was to provide each new author with enough basic skills so

that whatever else was needed could be learned by self-study and experi-

mentation.

About 125 ARPA authors have learned TUTOR from the materials;

the training of about 2/3 of these authors was directly supervised by

MTC staff. Many non-ARPA users also found the materials useful and

obtained copies. We estimate thatat least 125 authors were trained

by other instructors who used our material

This report describes the lessons learned in that effort. The

reader of this report is assumed to have familiarity with the PLATO

system, the TUTOR language, and the role, purpose, and function of the

MTC group. The latter is best described in the series of annual and

semi-annual reports which cover all of the ARPA/PLATO activities.
1

The reader is also assumed to be familiar with the terminology and

concepts of Computer-Based Education (CBE).

1
See for example "Demonstration and Evaluation of the PLATO IV

Computer-based Education System," First Annual Report for the period
August 2, "72-January 1, 1974, Computer-based Education Research
Laborator, university of Illinois, Urbana-Champaign, February, 1974.

10

MTC also developed aspart of the new author training course a

"mini-course" on instructional design for CBE. The development of this

course will be described in a later report.

This report.is directed to the intereSts of instructors of new

authors, developers of author training materials, and managers of computer-

based instruction development centers. Knowledge of the TUTOR language

is helpful, but not necessary, for understanding this report. In cases

when concepts have been clarified with specific examples, readers

unfamiliar with TUTOR can skip these comments with little loss.

3

The Principles of NTC TUTOR Training

Overview

The principles by which tLe MTC group has designed its training are

based on experience gained whilo teaching the PLATO basic authoring course,

providing follow-up training, and consulting with the ARPA/PLATO authors

during the lourseware development phase of their projects.

Most of the authors MTC trained had never before worked with a

computer and had little or no conception of Computer-Assisted Instruction

(CAI), Computer-Based Education (CBE), or Computer-Managed Instruction (CMI).

They had not seen a PLATO author at work, viewed an operating CBE class-

room, nor learned from a CBE system. Few had experience with nther "pack-

aged instruction" media, e.g., programmed instruction, video casettes,

film strips. Moreover, the hardware used for the PLATO system was new

even to those users familiar with CBE. Thus, the MTC author training

course had to provide basic instruction in computer science, CBE, and

programmed learning, as well as instruction in writing PLATO lessons.

Although such subjects as instructional design, CBE site management,

hardware trouble shooting, and peripheral equipment utilization were

included in the training program, this report will focus only on TUTOR

training.

TUTOR training io 'clearly one of th most important and most visible

components of the MTC training package. In fact, upon arriving at the

Computer-based Education Research Laboratory (CERL), new ARPA/PLATO

authors consistently viewed learning TUTOR as the only objective of the

course.

1 "

Objectives

The MTC TUTOR training course attempted to accomplish three types

of objectives:

1. Cognitive. Facts, conventions, system characteristics were
taut (e.g. TUTOR command formats, hardware capacities and
limits). In general, these items require little interpreta-
tion, reflection, or analysis.

2. Cognitive/Affective. Authoring tips and useful procedures
(i.e., items which are based on rules derived by use rather
than on facts or theory) were presented. Typically, these
procedures are "better" or "best" ways an experienced group of
individuals has found to code an algorithm, find information, or
organize a task.

3. Affective. Changed or new attitudes towards computers, CBE,
and authoring styles (i.e., developing a model for typical
author behavior) were encouraged. The information on which
these objectives are based is subjective, and moreover,
relates not to the specific details of using the PLATO sys-
tem, but rather to the delineation of the role and attitude
of an author. We need to emphasize that few, if any, of the
authors on the PLATO system have ever viewed it from the
student's perspective: -they have not been required to earn
credits or grades based on their understanding of a PLATO
lesson.

By strict definition, all of the items suggested by "3" above and some

of those listed for "2" would not be included in a description of

TUTOR training. However, as we have already noted, training the MTC

group provided was a combination of TUTOR training, instructional design

training, basic computer science, and acclimatization to CBE. Any descrip-

tion of our TUTOR training course requires the drawing of arbitrary

lines to define TUTOR training as a subset of overall author training.

Because MTC interlaced various types of training, we often accomplished,

for example, instructional design objectives while overtly teaching TUTOR.

For that reason, the objectives listed above and the principles given

13

5

below are not only rhose directly related to &le teaching of TUTOR,

but also include those followed during the portion of the course directly

concerned with TUTOR training. At the end of the list of principles

there is an index to some examples of the ways that the principles

were implemented in the MTC training course.

Thirteen Principles

The principles which the MTC baaic author training course attempted

to adhere to are as follows:

1. Introduce information in small segments (typically one to three
new commands, or the equivalent, at a time).

a Provide exercises for each aspect of each command before
introducing new aspects, i.e., distribute practice.

b. Provide correct "solutions" for the exercises to remove
misconceptions the student may form about language usage
before they adversely affect the new author's work.

9. Test the student often (after each segment).

a. Test command usage, function, execution, and placement
(i.e., the order of commands) rather than command formats
or syntax.

b. When possible, test via problems that permit multiple
solutions--to avoid overly-contrived questions.

c. Test via computer-generated problems so that mastery learning
and generalization may be achieved.

3. Demonstrate a need for a feature, then introduce the solution
(a new command, key, etc.). This method helps to insure that
the author is motivated to learn and us his new knowledge
immediately. To amplify, do not teach "all about" a new topic
when it is first introduced. That will only provide the author
with solutions to problems he has not learned to recognize.

4. Intermix teaching about different facets of the PLATO system
(commands, editing features, author behavior, keys), rather
than teaching all about one aspect at once.

5. Self-pace the course.

4

6. Teach each author different TUTOR specialized subtopics (e.g.,
managing a student roster, setting up a router, graphing,
character sets). This technique solves five problems:

Training time is typically too short to teach each author
all topics.

Authors need enough time to practice what they have learned.
Without practice, the information overload resulting from learning
too much, too fast will be counterproductive. Teaching each
author a feu subtopics gives him time to practice them immediately.
Later he can learn and practice other subtopics by communicating
with other, authors who took the training at the same time.

In a self-paced course,'the unequal abilities among authors
can cause frustration for slower authors, but insertion of
subtopic training, matched in complexity and duration to each
author's progress, can keep the group "bunched."

Skills in the subtopic areas are needed nearly immediately
nn-site.

Authors should begin to learn to assist and depend upon
each other. In fact, each author can be an on-site consultant
for the rest of the group and can feel comfortable with at least
one "advanced" technique.

7. Reduce the proctoring needed by providing an on-line reference
manual. Rather than putting all the information in the form of
long readings, we provided a brief overview which was followed
by a "look-up" in the on-line manual. Thus the authors interact
with on-line materials in much the same way that students inter-
act with a lesson. This approach also forms in the author the
habit of using the system as an information source.

8. For authors unacquainted with computers, introduce unfamiliar
ideas (e.g., looping) via many small steps leading ultimately
to a thorough understanding of the principles of operation.

9. Encourage experimentation to discover results of undocumented
systems features. Some authors -eed to be reassured that their
experiments or mistakes are not harmful to the system and that
a "try it and see" approach is cften the best one. In this way
it is often possible to convert potential anxiety into curiosity--
a more poditive attitude. For i-his same reason, we left some
details about command operations unspecified--for the new author
to discover.

10. Teach via a PLATO lesson several important facts and concepts
which are available nowhere else. In this way, the author's
curiosity and motivation to learn "how they did that" is enhanced.
Also, the author will become aware of certain esthetic and instruc-
tional design problems since he will feel like a real student,

1 5

7

with the attendant problems and frustrations. (Realized mid-way
into the project, this princ4p4 not incorporated every-
where it could and should haVe

11. Present models of successfule how they proceed; how
3eY

frequently they interact with o.1,6, authors, the terminal, and
on-line colleagues; their need for documentation; and their
attitudes about innovation, plagiarism, and game playing.

12. FolloW the basic training with retraining and advanced topics
training on-site at a later date.

13. Anticipate problems which the new author is unlikely to encoun-
ter until after formal training and provide him with exercises
that will allow him to avoid or solve these problems. For
example, a new author may not be easily convinced of the need
for good documentation by mere exhortation from his instructor.

Implementation of the Principles

Principle 1--small segments. Information is introduced in small

segments with intervening practice throughout the 15 programming

exercises (Appendix I). Within each exercise, practice is distributed.

The student is able to verify his understanding of the directions and

his performance on the exercises by consulting "ppsoln" and "ppcode".

Principle 2--testing. Nearly every exercise is followed by a test.

(Each programming prOblem test or PPT is present on-line in lesson

"pptest" and examples from that lesson are in Appendix II of this report.)

Examination of the tests demonstrates the problem-solving (i.e., not

recall) style of the questions. Where appropriate, multiple forms of

the correct answer are accepted (Appendix Ir,-PPT-8, PPT-14). Whenever

possible, computer-generated test items are used (PPT-4, PPT-6). In
A

Appendix II, the computer-generated components are indicated by a gray

backgr,und.

Principle 3--demonstrate a need. The introduction of the -EDIT-

1 6

FLOW CHART FOR MTC AUTHOR
TRAIN ING COURSE

SIGN-ON, INTRODUCTION

HARDWARE FAMILIARIZATION

"COMPUTER" SERIES

" TEACH" FOR EDITING "DISPLAY"

PPI HARDCOPY
DIRECTIONS

V

" pptest "

PASS

V

ppcode"

FAIL

problem 1

APP.

(IEXT PROBLEM

II
ppsoln "

"tutor"

SPECIAL TOPIC
TRAINING

2
3

4

m 15

see

--go. OPTIONAL EXERCISES

HALF DAYS OF INSTRUCT-
IONAL DESIGN TRAINING

WHILE DEVELOPING
FIRST

END

17

" VARIArLES"

9

key in programming problem 13, part "a," and the introduction of the "Save"

_option of_the_editor-in-programming-problem-4,-part" -ard-two of-the-

More obvious examples of demonstrating a need for a feature or command

before teaching it.

Principle 4--intermix topics. The programming problems partially

reflect the principle of intermixing teaching on various aspects of the

PLATO system, but the actual ,conduct of the course (not documented here)

is a richer source of examples. Instructional design and elementary

terminal maintenance are mixed with TUTOR, for example.

Principle 5--self-pacing. With the exception of a few introductory

discussions on non-TUTOR topics, the course is self-paced.

Principle 6--training in specialized subtopics. This was imple-

mented as part of class management procedures by assigning authors

special topics to study. The selection, assignment, and testing proce-

dures were not automated except that the individual progress data used

to make assignments were retrieved from computer records based on

performance in "pptest".

Principle 7--interactive reference manual. Each programming

problem directed the student to look up the appropriate commands in

the "tutor" lesson series. Appendix III attempts to portray the inter-

active nature of that on-line reference.

Principle 8--new concepts. We found that new authors had a great

deal of difficulty with concepts such as looping. They could not see the

need for repetitive operations of this kind or relate them to procedures in

everyday life. In short, looping seemed a special procedure as mysterious

as the circuitry of the computer itself. To introduce some feeling

1 8

10

for the need for looping procedures, we began in programming problem 2,

part "f" with a simple animation. Next, problem 4,- parts-"c" -and "i" intro-

duced the idea of incrementing a variable on which the same calculations

were repeatedly performed. (The repetition was done by duplicating the

coding, rather than by truly looping.) In problem 7, the concept was

slowly generalized. The variable -at- from problem 4, part "c" was

retrieved and re-used. In the first part of problem 7, the unit was ini-

tially re-executed via student-controlled branching, then with author-

controlled branching. Each of the three parts of problem 7 (with -next-,

-goto-, and -jump-) slowly faded the cues about what the computer is doing

internally. By the time the author attempted the -do- loop exercise,

problem number 8, he had been exposed to all of the prerequisite concepts

for loopirig,, except increment size.

Principle 9--discovery learning. Examples of leaving matters for

the author to discover are found in programming problem 1, parts "c-f"

and "i," and problem 4, parts "f-g." Persuading authors to auopt a

"try it and see" philosophy was taught by example and by precept.

Interestingly, there was one author who never overcame his fear of

"breaking" the system.

Principle 10--making authors act as students. Lessons "teach",

"display", "variables", and "computer" are a start in this direction.

However, they lack in-lesson mastery tests and are less sophisticated than

is required to fulfill this objective thoroughly.

Principle 11--models of successful authors. This is a topic perhaps

best taught by apprenticeship. Unfortunately, the longest any group

:pent in training at CERL was-a few weeks, not long enough to allow time

a 9

11

for an apprenticeship. .Though the MTC staff attempted to act in some

sense as models for author behavior, we necessarily had a different

role, as consultants.

Principle 12--advanced training. We endeavored to provide training

on some concepts which were too coh.plex for new authors by a number of

procedures described in the section on advanced training (see Appendix

IV). In addition, we created lessons such as "execute" and "datacollct"

to support training via self-study and MTC-sponsored seminars.

Principle 13--"half-baked" lessons. Although the MTC group is con-

vinced of the value of this technique for TUTOR training, our only major

use of this approach was in instructional design training. Given more

resources, we would create "half-baked"or "mangled" lessons to be com-

pleted and debugged by ne'W authors. Copies of functional, optimized

lessons wculd be implanted with a selected list of errors, difficulties,

'and weaknesses. Finding and correcting these problems, then comparing

the result to the original lesson would a31ow a new author to encounter

and solve problems he would not ordinarily face until well after training

was completed.

The first five principles were recognized at the time the course

was created. The rest were derived from suggestions, observations, and

experimentation which followed.

20

12

Development of the Materials

Author and Instructor Backgrounds

The MTC basic TUTOR training package was developed for a specialized

audience of mew authors. The follcwing conditions were assumed or found

to hold for this group:

1. The sites to be established were few in number, seven, and geo-

graphically remote from CEAL and other PLATO sites.,

2. Small groups (4-10) Of authors from a single site were to come

to CERL for a 2-3 week training course.

3. For most of those authors, the initial training would be the

only opportunity to visit CERL and the only extended period devoted

to formal training.

4. No CERL staff member or ither person knowledgeable about the

PLATO syst:em would be employed on-site. Only a limited number

of visits to the site br ,URL staff would be possible.

5. No staff familiar with CBE, CMI, or other automated education

techniques would be available on-site as project employees or

consultants.

6. The same CERL staff who trained the site members would make

any site visits and would be responsible for consultation.

The above conditions held true for most sites. The actual numbers of sites

and authors to be trained was about three times what was expected. The

range of author ability and background was substantially larger than we

anticipated. A few held computer science degrees, but after two years

work with PLATO, several could not meet the training standards designed

to be mastered after the two week basic TUTOR course (see appendix VII).

The motivational levels of the authors were mixed: some had worked hard

to be salected for a PLATO project, others had been chosen from a pool of

"rejects" from other tasks.

TaF,le 1 portrays some of the characteristics of the personnel we

2 1

13

trained. It does not reflect the total administrative or support

staff at the sites, but rather the staff that received author training.

Table 1

New Author Characteristics

SITE
TOTAL
STAFF

NO. OF

ADMIN
Na OF
AUTHORS

NQ OF
MILITARY

AUTHORS

NQ WITH
CBE EXP

Na WITH
ID EXP

NO. WITH
COMPUTER

EXP

AVERAGE
AGE

ABERDEEN 10 I 9 5 0 2 10 45

SHEPPARD 12 2 10 10 0 I

b
3 --

MONMOUTH 10 -- --
7c 5d 3e 38

CHANUTE
(INrnAL)

H 3 8 4 0 0

.-

2f 27

CHANUTE
(OTHER)

13 6 7 3 0 2 29

Note. The table above reflects the staff trained by the MTC group
(basic and/or advanced) at several of the major sites. It does not
necessarily reflect the total staff at a site, nor is it a comprehensive
list of groups trained by the MTC group. The MTC group trained at CERL
or on-site a total of 85 authors. Another 40 ARPA authors and 125 non-
ARPA authors were trained by site personnel using materials deyeloped
by MTC.

a
Grad certificate in ADP, left project after four months.

b
Two who knew several languages, one who knew FORTRAN.

c
Average of 2.5 years experience.

d
Average of eight years experience.

e
From 5-17 years experience. (Note that because some individuals

had broad experience, tutals for Monmouth exceed the number of authors.)

f
Each had one college level course.

gOne year and three years experience, respectively.

2 2

14 ,

Just as the backgrounds of the authors are important for understanding

the environment of training, the backgrounds of the MTC instructors are

also relevant. Initially, three staff members with PLATO experience

ranging from 3-4 years conducted the training for the authors at Chanute,

the first MTC site. As the MTC group grew, it added staff without PLATO

experience; later, experienced staff could be found.

SITE
TOTAL
STAFF

NO. WITH
PLATO EXP

AVG YRS
EXP-

a

OTHER
COMPUTER

EXP

AVG YRS
EXP

OTHER ID
EXP

AVG YRS
EXP

AVERAGE
AGE

MTC
(INITIAL)

5 3 3 2 2 3 2 28

MTC
(OTHER)

i3 6 2 3 I 4 2 27

aAverage number of years of PLATO experience possessed at beginning
of employment (for staff with previous experience only).

The First Attempt--Eight Statement TUTOR

MTC's initial training exercises were developed around the concept

of a "mini-language," Eight Statement TUTOR. TUTOR usage on the PLATO III

and IV systems was examined to determirs which commands were used most

frequently. With this data as a guide, eight often-used conmands were

selected. Using only these commands, one could construct a complete,

if somewhat simplified, lesson. The eight commands included:

1 command used only for organization and naming (-unit-)

2 commands which were usually used together (-at-, -write-)

1 command with a tag form identical to -at- (-arrow-)

2 sets of commands easily and obviously paired (-ok-, -no-;
-answer-, -wrong-).

These commands were introduced together in a classroom lecture

and required for the first exercise. By grouping the commands as noted

2 3

15

above, only five significantly different kinds of commands needed to be

explained. Furthermore, by fitting more and more commands within the

structure generated by the basic eight, we felt that all of TUTOR

could eventually be learned via a "spiral" path. Each revolution of

the spiral--there were three in ,basic TUTOR--added new judging and

display techniques. The commands to be added during the second and

third cycles were also chosen based on frequency-of-use data.

The main difficulty in teaching TUTOR this way was that though

the number of commands was few, the structures that could be built

were complex. Especially problematic was the fact that the implicit

branching built into these powerful Commands caused some commands to

be re-executed or reprocessed two or three times. For those authors not

familiar with computers, it was difficult to explain how the computer

was rational, orderly, and sequential wh le explaining the branching

implicit in TUTOR. Authors were typically confused by the fact that

some commands seemed to function consistently regardless of where they

were placed, whereas other commands seemed to function differently

depending on where they were placed, i.e., the commands interacted

with each other. More than a few authors had the impression that the

computer somehow "stood back," scanned all the commands present without

regard for their order and then somehow chose the proper ones to

execute! Based on a recognition of these misconceptions, MTC created

a series of lessons, exercises, and tests to teach even more care-

fully the exact order of execution. The lessons, however, had only

limited success; authors could make simple coding work, often with-

out knowing why, but had substantial difficulty and frustration

2 4

16

trying to add to their knowledge. In order to prevent a great deal of

author frustration, a huge manpower effort (high trainer/author

ratio) was needed. Commands taught later in the couLse (for calculation,

student-controlled branching, iteration) were not so well understood

because their functioning depended on the structures built upon the

still-hazy basic eight commands.

After two administrations of the TUTOR course in this form, MTC

revived a PLATO III idea which had never been completed and tested.
2

The central concept was to delay introduction of the complexities of

answer judging (-arrow-, -ok-, -no-, -answer-, -wrong-) until the very

end of the basic course. The rationale for this ordering was to intro-

duce the difficult topic of answer judging after:

1. the concept of orderly, sequential execution was well
understood and after

2. the student had experienced success and had built up
his confidence by learning some of the easier TUTOR
topics.

Coincident, but underestimated, benefits accrued because:

3. fewer commands needed to be introduced initially, thus
allowing new authors to "ease into" TUTOR more slowly,
and because

4. answer judging was, for most people, easier than calcu-
lation and looping, the topics that immediately preceded
them in the new, revised order.

Because of the difficulty with calculation and iteration, many authors

in the original courses felt that "the farther you go, the harder it

gets." By the end of the basic course, their motivation to begin

2"Non-arrow TUTOR," R. A. Avner, unpublished paper, 1970.

17

writing a lesson or to learn new commands was very low. On the other

hand, placing the now-easier answer judging following the more

difficult TUTOR topic caused authors to gather momentum toward the end of

the basic course. Even if authors were bogged down in the calculation

and iteration exercises, when they heard from faster colleagues that

there was easier material ahead, they were encouraged to keep working.

Simultaneous with the revision of the order of the topics, the

portion of the course on editing and controlling the terminal was

separated from the first exercise and made a'separate activity (lesson

"teach"). This modification significantly reduced initial frustration.

It is not possible to make a clear comparison between authors

trained via Eight Statement TUTOR and those trained with the revised

TUTOR exercises. The Chanute authors remained at CERL for seven weeks

because of delays in terminal delivery, a factor that allowed on-going

training to remedy deficiencies in the training. Monmouth, the other

group trained with Eight Statement TUTOR, had a great deal of prior

CBE background. Subjectively, however, we found that the revised

ordering enormously improved the speed, efficiency and attitude of new

authors.

Beyond Eight Statement TUTOR--A Description

In the initial version of the TUTOR training materials, the MTC

group used off-line copies of the on-line TUTOR reference lesson

"aids" as backgrou material, introduced most new information via

lecture, gave oral ,_ests for each exercise, and obtained written cri-

tiques following each exercise. Though thorough, this process required

a great deal of labor. As time progressed, MTC had more non-training

2 6

18

responsibilities and hence wished to reduce the manpower allocated

to training. Furthermore, we had accumulated sufficient data both to

improve the course and to decrease the trainer/author ratio.

Authors found the "aids" materials (which were not written to

teach TUTOR) too detailed and generalized. Therefore MTC, with the aid

of other CERL staff, created a series of reference lessons ("tutor")

for novice authors. These on-line references were written as a simplified

version of "aids" but more importantly, were interactive--that is,

the new author could in many cases "see" some of the hidden steps in

the execution of a command (e.g., -help-) or input sample commands and

observe their effect (e.g., -bump-). The "tutor" series contains

a subset of the TUTOR language (43 commands) and descriptions of six

concepts applicable to many commands (e.g., variables).

The oral tests were first changed into paper-and-pencil tests

and later were put on-line (lesson "pptest", for programming problem

test). Computer generated and graded tests enhanced test integrity and

provided a mechanism for giving the author the "answer" to his programming

exercise without permitting "cheating" (see below). For affective

objectives, we found no techniques as efficient and thorough as those

used for testing knowledge about commands; subjective ratings and comments

were recorded.

Two more series of lessons were created to define the author's

job more precisely and to catch subtle errors. All of the programming

problems (exercises described on paper) require the student to create

some sort of program. Authors sometimes found it difficult to understand

what was to be done without first seeing it on the terminal. Hence, a

2 7

19

series of lessons "ppsoln" (programming problem solutions) was created

to show the student his "target" as it should execute in student mode.

Also, because of the flexibility of TUTOR, it was possible for an

author to create a program that seemed in accord with the instructions

when, in fact, he had overlooked a detail. To remedy this, an author

was allowed, after he had successfully completed the "pptest" for an

exercise, to view a "properly" coded solution (series "ppcode").

The "programming problems", the paper directions for the exercises,

were updated, elaborated, and clarified during each revision. In

addition, many more questions were added, and the oral lectures were

replaced with written explanations. These paper lectures are terse,

simplified explanations which rely heavily on examples. Some lecture

materials were put into the'form of a PLATO lesson ("teach", "display",

"variables", "computer") to give the author insight into a student's

problems in learning from the PLATO system.

Because changes in comnand names and formats required updating of

the training materials each time the course was offered, there were

ample opportunities for making more substantive changes to the exercises,

to lesson "tutor", and to all materials in the training course.

20

Advanced TUTOR Training

The basic TUTOR course was designed to be the only formal instruc-

tion ever to be presented to the ARPA/PLATO authors. However, based

on our perception of the style and quality of the lessons being produced

and in accord with our principle of teaching a topic when an author

has a need and context for it, we decided to supplement basic TUTOR

training with advanced TUTOR training to be given on-site.

Although a substantial amount of training was done on-site (any

site visit during the first 6-8 months after training included one or

more advanced TUTOR sessions), we found authors generally resisted

formal instruction (including training during MTC site visits) once

they had left CERL. If pressed, they would rather listen to a 1-3

hour lecture on advanced topics or new features than work even a few

paper "exercises." But in the main, they would rather not endure any

formal instruction. Once in the field, they were under considerable

time pressure and therefore relegated training to a lower status.

Documented Drivers

Under these circumstances and in an attempt to bolster the skills

of seemingly underprepared programmers, we created two "documented

drivers," (pre-programmed routines accompanied by extensive documentation).
3

The routines can be easily incorporated into a lesson to provide standard,

but hard-to-program, practice or testing paradigms. These carefully

described drivers were intended to allow an author to learn about advanced

3
See Appendix IV for an example.

i' 9

21

features and techniques in an actual working context; presumably, since

authors felt training exercises were "time out" from their production

time, they might be more willing to spend time to understand drivers

which would be useful in their lessons.

The "documented drivers" sought to meet four'objectives. First, each

was a response to an author's specific request for programming help,

modified to be more general. Second, the drivers were to provide unsophis-

ticated authors with routines more poerful than those they otherwise

might employ, but containing features they would program it they knew

how (e.g., providing an "input now, judge later" matching quiz which

allows the student to change answers, provides student feedback, and

prevents impossible answers--in general, a "never-fail" matching routine).

Third, they were a vehicle for teaching advanced coding. Hence, rather

than providing a "black box" routine or even including a standard level of

documentation, the drivers were explained in great detail. For example,

one provides a description of "segmented" variables, a topic not taught in

the basic TUTOR training course.

A fourth objective, not related to TUTOR training, was to provide

instructional design guidelines related to use of specific testing for-

mats. For example, the matching driver contained sample directions to the

student and suggestions for parallelism between alternatives, number of

alternatives vs. number of questions. We had previously noted that

such considerations had been overlooked by new authors.

Several forms of a hardcopy questionnaire were used to assess the

usefulness and effectiveness of this approach. In addition to providing

3 0

22

some useful feedback about specific changes and additions to the docu-

mented driver, the respondents answered questions which indicated:

1) they would find additional documented drivers helpful; 2) they found

the documented driver about as useful as several other manuals, refer-

ences or aids they were using or had used; 3) they all felt documented

drivers were most useful for authors just starting to develop their own

lessons (as opposed to "new authors" or "authors who had written and

stiglent-tested several lessons"). Interestingly, the only uses we know

about were by "authors who had written and student-tested several

lessons," but no respondents selected that choice.

Though it is not possible to judge how much information was trans-

mitted in this fashion, an examination of 35 Chanute lessons shows

extensive use of a matching driver: seven lessons use the MTC matching

driver, and 26 lessons use a version of that driver as modified by Chanute

staff. Only one use of the randomized drill diagram was found in the Cha-

nute lessons (though it was a Chanute author who requested this routine be

written). Fort Monmouth was the only site other than Chanute which

employed these "documented drivers." We discovered later that at some

other sites, the materials were kept by the director and not circulated to

the authors. By that time, however, most authors had mastered the concepts

the drivers sought to teach. Because the need had decreased and because

we lacked indications that this approach was especially successful,

later drivers created by the MTC group did not contain the extensive

documentation included solely for the purpose of TUTOR training.

Calculation Training/Retraining

Calculation was the topic treated most regularly during on-site

23

visits. Not only was it the topic ARPA authors found most difficult during

the MTC course, it was also the one which they had greatest difficulty

mastering during the follow-up phase. Although there are many facets

of TUTOR which are quite unrelated to calculation, an author's ability

with calculations often serves as a useful measure of his overall

programming ability. Unfortunately, only a few of the ARPA authors

(10-20%) ever gained a really good mastery of calculation. Incomplete

understanding necessarily hindered or prevented the development of certain

complex teaching strategies. In quite a number of cases, the MTC group

provided coding for complex programming tasks; however, it is clear

that MTC's efforts could not, in any case, completely compensate for low

comprahension of this topic. In fact, at several sites we have found

instances where authors simplified or discarded plans because their

coding experience and skills were too weak to do the programming needed

for the ideas they envisioned.

We feel that most authors failed to ,master this topic because they

had backgrounds weak in mathematical problem-solving. Authors with

mathematical or scientific backgrounds had few difficulties, whereas

authors with other subject matter backgrounds fared worse, in general.

Regrettably, some authors of two to four years experience still do not

use or understand expressions with indexed variables
4

, a topic taught

in the basic TUTOR course.
5

4For example, the indexed variable v(v1) in the expression
"calc v(v1)4-: 4" indicates that the value of vl should be used to calcu-
late which variable is set equal to 4. If vl equals 10, variable 10 (v10)
is set equal to 4.

5See Appendix VI for a survey of use of indexed variables.

32

24

In our training we found a significant initial stumbling block to

be the concept of a "variable." We found four levels of understanding

of this concept.

1. The author understands that "time 15" causes a 15 second wait

and that the name "delay" can be attached to a constant whose
value is 15.

2. He understands that "delay" could.instead be a variable, say
vl, whose value is 15. Few authors have difficulty understanding
that adding or subtracting from "delay" varies the length of

the timed wait.

3. At the next level, new authors are able to properly handle the

problem "What if 'delay' contained the time in minutes, rather
than in seconds?" and other problems with simple arithmetic

or algebraic solutions. Most authors can type "time delay X 60

with confidence.

4. Authors do not easily generalize these results to commands like

-at 1014-. Knowing that this means 10th line, 14th space, they

"see" 1014 as two numbers. When they use an -at place- (where

"place" = v2 = 1014), they cannot describe how to add or
subtract from "place" in order to vary the screen location.

In order to move the position of the -at- down one line, some

could be expected to increase "place"' by 64 (the number of

spaces in a line), rather than by 100. They might even claim

that because there are "really" two numbers in "1014," it is

impossible to adjust "place" arithmetically to indicate a
position one line down. Although this quandary can often be
resolved by pointing out the new position and the tag of a '

corresponding -at- command (11th line, 14th space or "1114"),

some authors still have difficulty realizing that values held

in variables are indistinguishable from those typed explicitly

(i.e., that "1014," placed in a variable which is used as the
tag of an -at-, behaves exactly as if the author had typed

it directly). Likewise, the use of logical operators in condi-

tional commands (e.g., "jump count > 5, true, false") is under-
stood more easily than the use of the arithmetic values of

logical expressions (e.g., "time (count > 5 + 1"). We esti-
mate a quarter or more of the ARPA curriculum developers did

not master the fourth level, the most generalized concept of a

variable. Programming problems 4, 7, and 8 (and the associated
tests) attempt to teach this concept.

The formats of variables also cause confusion. Authors introduced

to both "v" and "n" (floating point and fixed point) variables often

t3

25

believe that there are two sets of 150 student variables. Likewise,

alphanumeric format is often not understood thoroughly enough so that

alpha information can be manipulated. Many authors limit their operations

to storing and retrieving alpha information.

Data Collection

In the course of working with authors who were testing their lessons,

we found that they were not extracting all the information they might

from the student datafiles. Authors typically looked only at the'pro-

gress of individual students in a one-at-a-time mode. Therefore, MTC

wrote a pseudo-lesson "datacollct" to generate student data of all types.

A datafile was filled with data generated by simulated "bright" and "slow"

students in easy and hard sections of the lesson. There were miskeyed

questions, too-difficult questions, execution errors--in general, all

of the kinds of problems that can be found and diagnosed via analysis

of student datafiles. We intended to create a series of exercises to

give authors practice ana'yzing datafiles, but this seemed to be a

cure for a disease which the victims had not yet recognized. Hence, this

datafile analysis technique was explored, but never fully implemented;

this approach seems more acceptable for teaching new authors than for

upgrading the skills of semi-experienced authors. Unfortunately, at

the time it was developed, few new authors remained to be trained.

Therefore, only one addition was made to the basic lesson described

above: a set of routines which demonstrated how student data could be

stored, sorted, and retrieved from datafiles.

3 A

26

Other Advanced Training

To the credit of the designers of the software, training in the

areas of graphing, matrices, character sets, linesets, and advanced

graphics can be included either at the time of basic TUTOR training or

can ta learned by self-instruction. The directions are clear, the options

well-defined, and the results predictable. We have never produced

exercises on these topics and do not ever see a need for them.

3

.27

Unresolved Teaching Dilemmas

As in most teaching situations, problems arise which are not

solved; some of these situations offer several alternatives, each with

unpleasant results--dilemmas. Many of these dilemmas involve a situa-

tion in which the new author lacks exOrience. He may possess incorrect

intuitions or misconceptions which are too strong to be removed by lec-

tures, reading, or any exercise that can be included in a training program.

The new author must learn by experience. In other cases, the difficulties

are not easily perceived by the author because they cause problems for

someone else (students, administrators, etc.) or because the problems

appear only at a future date. For many such dilemmas there is a fruitful

alternative; if the supervisor of the new author is experienced, he can

firmly insist that procedures (e.g., documentation) ,be followed. When

a manager experienced in CBE development takes charge, many of the

dilemmas listed below vanish. Unfortunately, CBE is a new field and

managers skilled in CBE development are in short supply.

Dilemma 1--How to Deliver Advanced Training

When authors in the field are asked what kind of further training, aid,

and support they want (in advanced TUTOR, instructional design, etc.),

they respond that they would rather have a review
6

(of the code or instruc-

tion design) which points out specific items for improvement rather than

mini-courses, workshops or exercises. They point out that the specific

6A critique. A more detailed explanation is found in Lesson Review,
L. Francis, M. Goldstein, and E. Sweeney, MTC Report no. 3, CERL,

December , 1975.

3

28

critique is a more efficient use of their time, telling them nothing

about areas they are handling satisfactorily, and contributing to

production items rather than practice examples. This is logical;

however, we have seen repeatedly that reviews produce little transfer

of learning. In a review, many authors view general comments as unsatis-

factory (e.g., "units are of unwieldly length, feedback is sparse," etc.),

yet are unable to generalize specific comments to other cases and hence;

repeat mistakes. Our hypothesis, untested, but based on substantial

interaction with authors during lesson reviews, is that the cause of

this transfer failure is the author's relative inability to discriminate

between satisfactory and unsatisfactory material. Improving his

discrimination, however, would probably require drills or exercises to

a mastery-plus level--just the sort of activity authors seem to wish

to avoid.

Dilemma 2When to Teach Documentation

Documentation, both on-line and off-line; flowcharting; and "software

engineering" (the use of coding standards, meaningful block and define

names, etc.) are frankly not needed for the very elementary programs new

authors create. For that reason it is difficult to convince a new author

to document thoroughly. The extra time needed seems certainly a waste.

Few new authors need to modify someone else's coding and they may not

need to look back on their own for 6-12 months. Unfortunately, after

. that amount of time, bad habits (poor documentation) have already been

established and as much as one year's worth of work is poorly documented.

Some typical bad habits are worse than merely confusing. Failure to set

29

aside a group of variables which can be used,for special purposes across

a series of lessons can require an inordinate amount of work later,

or, more likely, result in abandonment of a review management strategy

which requires those variables. In conclusion, it is difficult to per-

suade a new author to use documentation, without more forceful incentives

than mere encouragement. (However, see principle number 13.)

Dilemma 3--Taxonomies in TUTOR' trainini

A general problem in all of education afflicts, not surprisingly,

TUTOR training. It is much easier to teach and test the mechanics of

performing a function rather than the judgment to know when to perform

it. For example, we regularly discovered new authors who had completely

filled a block and who were stymied about how to acquire more space.

Because of the training the author had received, we knew that these

authors could create new blocks; however, they failed to realize either

1) the nature of their problem or 2) that a task they could perform

was the solution. This training problem can be remedied by increased

proctoring, and hence costs, or by creating a "no-more-room" situation

in a controlled environment as part of an exercise. For example, the

author Can be instructed to add ten words of programming to a block which

has room for five words. Appropriately written instructions can capture

the author at this point of keen interest, yet before frustration occurs.

We have found this technique much more effective than providing in advance

a description of the problem and the solution. In Many cases, single-

triP1 learning has been accomplished.

Unfortunately, these sorts of situations do not frequent' ,ccur

3 8

30

within the control of the TUTOR instructor. Often appropriate situations

cannot easily be created and hence occur only for a few lucky individuals.

In other cases, a potential learning situation may occur, but pass by

unnoticed and unexploited because of the absence of a TUTOR instructor

who can turn it into a learning experience.

Since one of the important tasks for both instructional materials

and instructors is the creation of learning incidents, the PLATO system

can and should be used to simulate problems while simultaneously controlling

the situation. A simulation was used for teaching elementary editing

and command usage as early as 1970 (on the PLATO III system), although

that implementation was unsuccessful. There, most authors could complete

the simulation successfully, but could not solve actual problems when

they arose. It is not clear if this implementation failed because the

authors were too strongly prompted during the simulation, because the

program failed to separate the instructions and feedback given in the

simulation from information and displays provided in the standard editor,

or because the authors learned the tasks only mechanically with no real

understanding of what they were doing. It does seem that it failed to

take advantage of the capability to generate learning incidents. A more

recent simulation ("introedit"7) was used with considerably more success

to teach editing to some of the lat PLATO/ARPA authors to be trained by

MTC. The mixed success of PLATO simulations is difficult to explain

further. Differences in small details of a lesson's display layout,

7bySilas Warner, Indiana University, 1975.

3 9

31

directions, or student control options may actually overpower the

seemingly larger effects of lesson strategy and pedagogical technique. For

example, the MTC.lesson "teach" which instructs the author in basic

editing has been used successfully with few problems for training many

ARPA/PLATO authors. A modified version of this lesson was used by the

PLATO Services Organization (PSO) staff- until they concluded that authors

could not relate the actions performed in the modified "teach" to the

solution of typical problems. It is not clear whether the modifications

to "teach" or the mode of use accounts for the different perceptions of

effectiveness. Unfortunately, lack of documentation of the PSO modifi-

cations and style of use precludes analysis.

Dilemma 4--How NOT to Pass on Experience

The MTC group discovered that possessing lesson development experience

and using it to predict problems and outcomes is not always an effective

way to prevent those problems. It may, in fact, be deleterious.

Based on substantial prior experience, even at the time of the

Chanute training, MTC felt strongly that each author should choose a

very short subject for his first lesson. We felt the lesson should

be written as fast as was reasonably possible, tested on students, and

"put on the shelf" for six months, to be revised or discarded at that time.

It should either not be revised at all or should be revised only once,

the latter only if execution errors prevented collection of student data.

vc predicted most first-try lessons would be discarded eventually. We

opposed revision and predicted eventual deletion based on the premise that

a new author learns so much new information in the early stage of his

4 0

32

career that after six months he would want to rewrite the lesson whether or

not it had been revised previously. Furthermore, using the time of a novice

author to revise a lesson would mean the lesson would be completed only

very slowly. We felt the amount a new author could learn by revising his first

lesson, at this stage of authoring, would be less than he could gain by

beginning a new lesson. Six months later the same author, with expanded

coding and instructional design experience, could revise or rewrite the

initial lesson in a very short time.

It is most important for an author with little experience to go through

the lesson development process all the way (especially running students and

analyzing student data) before attempting to upgrade his lesson. The ways

in which he would modify it after going through the whole developmental

cycle are typically different than the way he would change it if he revised

it before obtaining student response data. Hence, it is important to

require the author to complete his first lesson development cycle just as

soon as possible.

MTC staff discussed with the Chanute authors the pitfalls of developing

their first lesson, our predictions about it, and our recommendations. Our

intent was to give them a glimpse at the future and to provide them with an

optimal path. Unfortunately, they mistook the meaning of the information.

They felt that, armed with the knowledge that a typical author discards his

first lesson, they could skip a step. The authors felt they COULD write a

first lesson good enough that it need not be discarded.
8

This conclusion,

8We found later that'authors seem to abhor deleting. anything. go involve
ment is high where large amounts of creative effort are expended. Even so, we

have been surprised by an author's view of the sacrosanctity of the computer
wordmany authors refuse to delete the:.coding generated from the practice
exercises of the-basic TUTOR course until months afterward.

4 1

33

coupled with the normal novice author's tendency to "hide" a lesson until it

is polished, produced results exactly opposite to those we desired and anti-

cipated. Encouragement by MTC personnel to finish the first lesson and begin

a second was cause for ill will towards MTC. The new authors felt the

"first lesson will be scrapped" philosophy was condescending: "Ever since

the training course at CERL, we were treated as novices. We are often

told that we won't (can't) produce a good lesson the first time around.-
"9

Consequently, the authors spent a great deal of time polishing and

repolishing lessons which had not yet been "rough sanded." In some cases

they revised their lessons on a nearly-daily basis to incorporatemew

commands or strategies they had learned.

91Comment from semi-annual reports written by each author (September 72-
April 73) furnished by Capt. J. Green, Chanute AFB.

4 2

34

Teaching TUTOR in an Environment of an Evolving Language

One unusual aspect of the MTC TUTOR training course was that it was

conducted in the environment of a constantly evolving language. Several

effects on the authors, instructors, and training materials were noted.

Surprisingly perhaps, the effect of the changes on the training was

not especially deleterious. In the course of a 2-3 week training session

only a few changes typically took place. These generally involved the intro-

duction of new commands or addition of new features to old commands. Because

TUTOR had been in development for some time before the first authors arrived

for training, the basic commands in TUTOR had settled into comparatively

final form. Also, in most cases, the MTC group was warned about upcoming

changes and could take steps to minimize their impact. In one case, the

TUTOR editor was modified to treat ARPA/PLATO authors specially until our

training materials could be updated.

Most of the changes have made the job of teaching easier. The most

radical (from the new author's viewpoint) changes that occurred were those

that affected how one moved about in the TUTOR editor. In 1972 and early

1973 this was a very complicated matter. Examination of old MTC documents

shows at least four distinctly different "maps" of the "pages" of the PLATO

software (author mode, student mode, security code changing,.etc.). The

current organization of the editor is so straightforward that we no longer

supply "maps" with our training--we used to spend 1-2 hours on the subject

when there were fewer options available from each page. That is, there were

formerly more levels of "depth" with fewer options at each level. The

current organization is "shallower" with consequently fewer keys needed to

4 0')

35

gain access to the same inforMation. Similarly, selection of options via

function keys '(-LAB-, -DATA1-, etc.) has largely been replaced with selection

via single letters automatically judged (without pressing -NEXT-). Options

are keyed to the name of the operation or information desired (e.g., "S"

means "security code"). Lastly, the current structure, when drawn as a

"tree" is much "cleaner." There are fewer crossovers between "branches"

now--fewer special cases.

In another case, the level of TUTOR training we aimed for was signifi-

cantly changed when the "ID/SD" interactive graphics editor was introduced.

This feature made the design of complex graphics so quick and easy, it

both solved and treated problems. Rather than teaching most display commands

in detail, we shifted to teaching each author only enough so that he could

generally relate the system-generated commands to his display. This proved

to be a much simpler task than teaching him enough TUTOR to generate the

coding himself. The only problem we met was that creating displays became

so much fun that we had to place a time limit on one of the programming

exercises. Otherwise, authors would have spent the day drawing pictures.

Changes to commands followed somewhat similar lines. They tended to

simplify common uses or expand sophisticated use. In nearly every case,

the lessons already written were automatically converted to the new form

of the command. The MTC training materials, however, had to be regularly

updated.

The introduction of new commands that were easier to learn and under-

stand often meant that less efficient or straightforward commands were

allowed to remain in the system to prevent old lessons from becoming obso-

lete. New authors had no problems unlearning old forms; they had never

4 4

36

learned them. However, the MTC instructors were necessarily staff of long

experience. Although there was never resistance to the improved commands,

the old habits sometimes died slowly.

37

Evaluation

The progress of the authors and the appropriateness and quality

of the training materials were monitored continuously during development

and use by means of rating forms, paper or on-line quizzes, and, during

the first year, a final overall test. Because materials were under

continual revision, these internally gathered data served mainly for

formative evaluation. Evaluation of the finished product is best mea-

sured by reports of users outside of MTC during this period.

The Chicago community college authors associated with the NSF

Demonstration Project were taught the fundamentals of TUTOR in a series

of courses taught by CERL staff. In the Spring of 1973, twenty-four

authors from Chicago spent a marathon weekend in Urbana learning TUTOR.

Rather than receiving instruction from the Community College Coordinator

(a senior educator with CBE and instructional design experience who had

carried out previous author training), the authors were trained using

a shortened version of the MTC TUTOR course. The instructors were

selected MTC, PEER, and other CERL staff.

The general consensus was that the [semester-long] spring
course was far superior to the fall course in every respect.
One reason given was that early in the course the class spent
a weekend at CERL with full access to the terminals and met with
the subject matter area coordinators. They returned from that
weekend with a good up-to-date understanding of the newest TUTOR
commands and much practical experience. "Our group had better
training. We learned the powerful commands--mode erase, variables,
etc. lu

101'PLATO comes to the Community College," E. R. House and C. L. Gjerde,

Center for Instructional Research and Curriculum Evaluation, University of
Illinois (1973), pp. 35-36, [quote from pseudo-named author]..

4 6

38

An evaluation of the weekend workshop just as it ended also suggested

the participants found it highly valuable. Asked, "Would you recommend

that a friend with the same background and interests as yourself take

a workshop such as this," the 20 people completing a questionnaire

responded:
11

Definitely-Yes 12

Probably 6

Uncertain 1

Probably Not 0

Definitely Not 0

No Response 1

More recently, a Federal Aviation Administration (FAA) Academy

staff member tasked with training new authors reported that in addition

to using other MTC materials, the new authors,

have been in and out of "introtutor" [see Appendix V] and have
spent a lot of time in "pptest" [and] . . . "variables"; it
appears that the MTC stuff is much more valuable in that it pro-

1
vides constant practice and testing.

2

The MTC package was adopted as the training method for staff of

the PLATO Medical Project (a 60-terminal group).

Approximately 20 students in a University of Illinois CBE course

have been trained using these materials, and the materials were adapted

for classroom (i.e., off-line) training by a Human Resources Research

11PLATO Evaluation Report--TUTOR workshop 26-28 January 1973,"
R. A. Avner, Computer-Based Education Research Lab, University of Illinois
(073).

12
C. N. Burson, private communication, June 22, 1976. Oklahoma

City, Oklahoma.

39

Organization (HumRRO) staff member in order to instruct personnel in

that organization.

Because of the easy access to document copying machines, we do

not have an accurate estimate of the extent of the distribution of

MTC materials. We do not provide multiple copies for non-ARPA users,

nor does any other agency, including CERL. In fact, the existence of

the materials is not apparent to a new non-ARPA user; there is no reference

to them in any system-supported lessons, such as "aids". Nevertheless,

lessons for which we record users show a steady or growing use. Lesson

"tutor", is now accessed about 375 times per month, for example.

ApPendix I

The Programming Problems

to accompany the

MTC Author Training Course

The following exercises are part of a manual provided to new authors

taking the MTC Author Training Course. It is assumed that the author is

already familiar with use of PLATO as a student. Prior to seeing the

first exercise, the new author is shown a course outline, given a' list

of references, and provided with an orientation to the course.

4 9

I-1

Instructions for Learning to Edit

You have been as'signed a lesson called "teach" . Ordinarily,

when you get a new lesson it.is empty. This time, however, we have filled

your lesson space with instructions about how to maneuver in author mode.

Although this lesson file is a standard one, you will use it in an

unusual way for the first hour or two. You will operate in author mode most

of the time. Thus your interaction with the computer will be different than

you experienced when you tried lessons as a student.

At the same time, you will not be behaving exactly like an author

since you will not be programming very much. Once you get used to moving

around in author mode, you will delete the material in your lesson and,begin

to learn about writing your own code in the TUTOR language.

Note: While you are in author mode you will get few, if any, "Ok" or

"no" judgments by the computer and few hints what to do if something should

go wrong.

Right now sign into your lesson in author mode. On the screen that lists

the LESSON and BLOCK press the "b" key and don't return to this direction

sheet until told to do so by the instructions in your lesson.

1-2

Destroying and Creating Blocks

Go to the block display for your lesson. Fill in the information below

in the column labeled "now".

Now After

Block d, part 1 has what name?

Block e, part 1 has what name?

Block f, part 2 has what name?

Block g, part 2 has what name?

PLATO automatically deletes a block when there is nothing in it. Go

into block "two" and delete 100 lines. This is more lines than there are

in block "two," but other blocks won't be affected. When you return to the

block display page, you will notice that block "two" has disappeared.

Check the table of information you filled out above to see what blocks

have what names and fill in the column labeled "after."

An upper case letter (say, C) typed on the block display page is

interpreted as "Insert a new block after the block labeled C." Begin a new

block called "start": (1) Put it after the block named "six" by typing

"F" (upper case). (2) Ask for a "normal" TUTOR block; name it "sixb."

(3) Insert your name in this block, using the regular insertion directive.

(This insertion is necessary to keep PLATO from deleting the block because

it is empty). (4) Return to the block display page and compare this page with

the table of information you filled out above.

Delete all material from all blocks including those that say "Stay out."

Press -DATA- on the block page and fill out all lines possible.

1-3
PP1

Programming aohlem 1: Displaying Text via Write

The objective of PF1 is to familiarize you with (1) the -write- .command,
(2) the characte, grid system, and (3) the methods used to insert and d.:11.?

lines of code fr.,rn your lesson file. When Inserting TUTOR statements, fiirst
type the command, press the -TAB- key, and then type the tag. To continue

Inserting TUTOR statements, press -NEXT-; to return to the Line Display page,
press -BACK-. Remember while viewing the Line.Display page you may use the

following directives to control TUTOR.

f - Forward (up)

b - Backward (down)

i - Insert

d - Delete

a) Copy the following TUTOR statements into your lesson file in author

mode.

Command Tag

unit ppl
at 10.1

write ABC
at 162
write DEF
at 3201
write GHI

b) Look at this version of your program in student mode by holding the
-SHIFT- key down while pressing the -STOP- key (which is abbreviated:

-STOP1-). Notice the screen position of the letters A, F, and G.

Questions:

1. What is the screen position of each letter: A

, F , G

2. How many lines of information may be written on

the pl,,sma panel?

3. How many characters may be written across a single

line?

c) Add the following TUTOR statements to the end of your lesson file.

Command Tag

at ???

write XX

Calculate the correct line and character coordinates
so that the pair of X's will be written at the
center on the bottom line of the screen in student
mode. Replace the question marks with this number.

52

1-4
PP1

NOTE: If you are not sure that you have coded this problem correctly,
look at lesson "ppsoln" to view a working solution.

d) Look at this new version of your program in student mode. If the

placement of the two X's is not in the middle of the line, change the
character position of the -at- command so that the two X's are exactly
in the center of line 32.

e) Add the following TUTOR statements to the end of your lesson file,

Command lj_a

at
write

2741
This line requires 43 spaces on the screen.

f) Look at this new version of your program in student mode. Observe what
happens when the writing of an individual line extends beyond the right
boundary of the screen. This effect is called "wrap-around."

Question:

Given the -at- command of part e, how many characters may be
written before wrap-around occurs?

g) Add the following TUTOR statements to the end of your lesson file,

Command Tag

at 1824
write This is an example of a -write- command that has

a tag consisting of more than one line.

h) Look at this new version of your program in student mode.

Question:

The tag of the -at- command contains two pieces of information:
the line and character position. In part g above, the tag of the
-at- command tells us that the writing which follows will start at

line position and

character position

i) Add the following TUTOR statements to the end of your lesson file.

Command Tag

at 1010
write 0123456789
write abc...xyz
write 0123456789

5 3

1-5

PPI

j) Look at this new version of your program in student mode.

Question:

What are the differences in the way that PLATO executes the
TUTOR statements in part g versus part i?

k) The tag of a -write- command may contain a maximum of 112 key presses.
Many of the characters that you will be using in -write- statements
(i.e., capital letters) require two or more key presses to produce one
displayed character. Therefore, the tag of a -write- command in author
mode containing capitals, cannot contain 112 displayed letters.

The following line should be displayed on line 5, character position 3.
The TUTOR statements should again be added to the end of your lesson

file.

Display in capital letters on one line exactly (with underlining) :*

LEARNING TUTOR IS SUPERCALIFRAGILISTICEXPIALIDOCIOUS!

1) Now run lesson "pptest" in student mode and take the test for PP1.

*Underscore character is -SHIFT- 6. To backspace once, press -SHIFT-SPACE-.

1-6

PP2

Programming Problem 2: Drawings

Now it is time for you to create your own code. You will be given the ob-
jective and your task is to write the code to meet the objective. In PP2,
you will draw figures, selectively erase a Character, and do a simple animation.

Use of the following commands will help solve this problem:

unit

at

write pause

draw erase

If you are not familiar with these commands, you will find a description of
their use in the lesson "tutor". Remember, sign into lesson "tutor" from
the author mode page by pressing -DATA-.,

a) To help you get started, create a new -unit pp2strt-. Insert the following
TUTOR statement after the -unit- command.

draw 2020;2530;2040;2020

What type figure will be drawn by the above statement?

You are not going to be told when to look at a section of code that has
been written as in PPl. When you wish to try out any material as a
student, just hold the -SHIFT- key down and press key -STOP- (i.e.,
-STOP1-). You will then be placed into student mode at the beginning of
your lesson. (PP1). To view PP2, just press the -NEXT- key.

b) Write a statement of your own design consisting of two short lines.
Display the beginning of this message at 510. Using the -draw- command,
draw a rectangle around the message.

c) Display a capital letter inside the triangle, and draw a line from any
corner of the triangle to any corner of the rectangle.

d) Suppose we have programmed some type of game and it becomes necessary to
erase only the capital letter in the triangle. Add the necessary code
which will erase only the capital letter.

e) The capital letter was written and erased from the screen in a very rapid
sequence. The objective of this part is to delay the erasing of the
capital letter for 2 seconds.

0 We now know about the elements necessary for very simple animations:
-write-, -draw-, -pauie-, -erase-, etc.

Objective: Start a new -unit pp2move-. Write the code necessarY to
"move" a character in an animated fashion a few spaces
in any direction.

Run lesson "pptest" for the test PP2.

5 5

1-7
PP3

Programming Problem 3: The Grid System

The purpose of PP3 is to acquaint you with the fine grid system of the display

panel and to practice the directives "id" and "sd" used for creating displays.

If you are not familiar with the fine grid system, see one of the following
lessons: "tutor" or "aids". Use of the following commands will help solve

this programming problem.

unit draw circle

at write

a) Previously we learned the editing directives "b", "f", "d", and "i" for

"back", "forward", "delete", and "insert", respectively. Much like "i"

which allows you to insert commands in your TUTOR code, "id" allows you

to insert a display. Typing "id6" will insert the display after line 6.
Press -HELP- to see the options available for creating displays while in

the "id" mode. In the lower right hand corner will be the words "gross
grid" and the numbers refer to where the cursor (the "+" which moves on
the screen) is positioned in both fine and gross (character) grids. After

drawing a display, pre.ss -BACK- to inacrP the display commands in your

TUTOR code.

b) If you had partly constructed a display using the "id" directive or you
would like to 'see a series af display commands, you can use the see
draw ("sd") directive to regenerate the display. First, move the first

line to be displayed to the top of the screen and then type "sd7" (or

whatever number of lines) to see the first to the seventh line displayed.

At this point you can continue your display.

Start a new -unit pp3-. Using the fine grid system and the "id" and

"sd" directives, draw the following meter face. The important thing is

to understand the relationship between the character and point grid systems.

Do not spend more than one hour doing this part of PP3.

Note: The arrow shown on the meter face may be made by using existing

characters. Ask the proctor how this arrow is displayed.

y=272

y=192

-10 -5 0 5 10

DC VOLTS
y=192

c) Draw the smallest possible circle you can around the box above. Its

radius is dots.

6

I-8
.PP3

Remember to look in lesson "ppsoln" for solutions to programming problems.

d) Take PP3 test in pptest.

1-9

PP4

Programming Problem 4: TUTOR Variables

In PP4 you will study TUTOR variables, how to set, change, rename, and display
them. For background information, read the course handout entitled "Variables"
and the "Variables" topic in the lesson "tutor". The following commands
will help solve this problem.

unit define calc

at showt

Try lesson "variables" in student mode.

a) Start a new -unit pp4set-. First set TUTOR variable v1+1632 and then
-showt- (display) the contents of the variable in the center of the screen.

b) Set v2+1010 and display at character grid position 1010 by using -at v2-
and a -showt- for the contents of v2.

c) Add 200 to the current value of v2 and again use an -at v2- to -showt-
the contents two lines below the number in part b.

d) At times it is useful (e.g., for readability of your TUTOR code by
yourself or others) to rename a variable. This is done using the
-define-.

Example: define pos=v2

The name is limited to 7 characters and must start with a letter.
Caution: the -define- must appear before the first use of the new
name. Add the above -define- to your lesson and the below code.

calc pos+pos+20
at pos
showt pos

e) -define- variables for salary; taxrate and tax. Set salary + 10000,
taxrate + .21. Multiply salary and taxrate and place it in tax. Write
a "$" -at- 3005. -showt- the contents of tax after the "$" without using
another -at-.

f) Set v4 + -1234.567 and display with a -showt-. Did you expect the results?
Change the tag by adding an appropriate format. Replace the -showt- with
-show-.

g) Have the computer calculate the following expression:

v2 + 5x6/3x7+5

NOTE: Display the contents of v2. Study the result of this evaluation
and determine the order by which the different operators are
executed.

5 8

Does PLATO multiply or divide first?

I-10
PP4

h) Set variables v56, v69, v70, v71, v72 equal to zero. (This may be
done with a single -calc- statement.) Display the contents of v56, v69,
v70, v71, v72 to check.

The following problem is optional; check with your proctor before beginning it.

i) It is possible to reference a variable (e.g., v5) indirectly as shown by
the following example.

ca, v10 4- 5

calc v(v10) ÷ 3.14159

This will put 3.14159 in v5. Type the above code and add a -show- to
see the value of v5.

The purpose of this part is to generate a simple table in which you
calculate one column.

Start a new -unit pp4tab-. We will create a table for inflation assuming
a 5% rise in cost per year. Assume bread costs 25Q a loaf in 1972.

-define- year as v10 and inflate as .05 (constants can be -define-d
as well). Set year + 72, v(year) + .25 and pos 1010.

Generate each line in the table by using the following calc.

calc v(year+1) + v(year)+v(year)xinflate

and -showt- year and v(year) and then add 1 to year and 100 to pos.

In the above -calc- what variables are used?

Use the directives "s" (save) and "is" (insert save) to duplicate the
code. Ask your proctor if you are not familiar with these directives, or
read the directions by pressing -HELP- on the line display page.

Below is what the table should look like:

Table of Inflation Assuming 5% Rise Per Year

j) pptest for PP4 is next.

Year Cost of Bread

72 $0.25
73 0.xx
74 0.xx
75 0.xx

1

5 9

PP5

Programming Problem 5: Student Branching

This programming problem 'is designed to show how authors can provide for
branching which is initiated by the student. The following commands will be
needed to solve the problem. Read about them in "tutor" and in Sherwood V 1-10.

term

next

data base help

end back lab

a) Up to now you have had to work through your lesson in a "linear" manner
when in student mode; that is, before getting to PP4 you had to work
through PP1, PP2, and PP3. The first objective of this programming problem
is to provide a quick way to, get to a particular unit in student mode.
The TUTOR command -term- should be placed in the particular unit with an
appropriate tag; in student mode one can then jump to that particular
unit from any place in the lesson at any time if one knows the tag of the
-term- command. (Historically, the -term- command was invented so that
a student could request a definition of a "term" at any time during a
lesson; -term- is now more typically used by authors to move quickly
from one place to another within a lesson.)

Place the following TUTOR statements after all of the TUTOR statements
currently stored in your lesson space.

current TUTOR
statements in
lesson

unit ppl

add these unit pp5
statements at term PP5
the end of yonr at 1630
lesson space write PP5

Go into student mode. Now, from any display in your lesson, the fcllowing
series of key presses will allow you to hmmediately branch to the TUTOR
statements contained in unit "pp5".

a) press key: -TERM-
b) type: pp5
c) press key: -NEXT-

unit PP1
at 101
write ABC

-NEXT-

>.(steps a, b,

TUTOR statements
after unit "ppl"

and before
unit "pp5"

0

unit PP5
-NEXT- term PP5

at 1030
write ..5

1-12
PP5

You should now be viewing the characters "pp5" at screen location 1030.
Notice that you were able to by-pass all of the TUTOR statements between
unit "ppl" and unit "pp5". The important thing to know is that the system
"remembers" from where the -term- request was made.

Press the -BACK- key

Notice that you have returned to the display generated by unit "ppl".
Press -NEXT- and go to the display generated by unit "pp2" and "term"
again into unit "pp5". Press -BACK- again and you will be returned to the
unit from which the term request was made.

b) The -base- command gives the lesson author the option to alter the
automatic return feature of any term- or help-type sequence. A -base-
command with a "blank tag" causes the TUTOR system to clear the pointer
used when the student presses the -BACK- or -BACK1- key. The author has
instructed the system to forget from where the student initiated the help-
type sequence.

Place a -base- command with a blank tag in unit "pp5". Enter student
mode again and term (procedure outlined on the first page of this
programming problem) to unit "pp5". Now press -BACK- and you will notice
that you are not returned to the unit where you initially pressed the
-TERM- key.

c) Construct two more units: "pp5a" and "pp5b". Include a -write- statement
that gives the name of each unit when viewed during student mode execution.
Using the -next- and -back- commands, provide TUTOR statements that all6w
an observer to -NEXT- and -BACK- between units "pp5", "pp5a", and "pp5b"
as indicated below.'

unit PP5

-NEXT-

-BACK-

unit pp5a
-NEXT-

-BACK-

unit pp5b

d) The keys labeled HELP, DATA, and LAB (and these keys shifted, called
HELP1, DATA1, and LAB1) offer six possible student-initiated help-type
branching sequences. The tag of each command specifies the name of the
unit to jump to if the student presses the appropriate key. Pressing
the key begins a "help" sequence which may be one or more units long.
The last unit in the "help" sequence should contain an -end- statement so
that the student is returned to the unit from which he requested the help
(unless altered by a -base- command). For example, for the diagram below,
unit "pp5" ashould contain the TUTOR statement

lab pp5e

Unit pp5e should contain as the last command the TUTOR statement

end

6 1

1-13
PP5

Next you should add the necessary units and commands to your TUTOR
code so that the structure of the lesson follows this diagram:

(Provide the -write- statements that identify each unit.)

#

unit PP5
-NEXT-

<
-BACK-

-LAB-

unit pp5e

end

unit pp5a

V

-NEXT-_

-DATA-

unit pp5aa

end

--

-BACK-

unit pp5b

-HELP-

unit pp5ba

-NEXT-

unit pp5bb

end

* The units "pp5e", "pp5aa", "pp5ba", and "pp5bb" are all reached via
keys that produce a help-type sequence. In help-type sequences, one
may return to the "base" unit by pressing either the -BACK- (if a
-back- command has not been encountered), -BACK1-, or -NEXT- (if an
-end- command with a blank tag or an -end- command with a tag "help"
has been encountered) keys.

e) Undoubtedly, as a PLATO author you are now aware that it is possible to
become confused easily about the flow of ideas to the student, as illustrated
by the "flow diagram" in part d. Of course, there are ways to cope with
this problem of getting lost in the maze of possible sequences of units
the student might follow. For example, in the flow diagram in part d,
you may have noticed that the units had names that look like "family
names": pp5, pp5e, pp5a, pp5aa, pp5b, pp5ba, pp5bb. Obviously, you as
a PLATO author can interpret this as a hierarchy (pyramid) in pp5
programming problem 5 which means the fifth of the programming problems.
And, as in an outline, we would have

I. pp5
a. pp5e

II. pp5a
a. pp5aa

III. pp5b
a. pp5ba
b. pp5bb

6

1-14
PP5

(Of course, presenting ideas on PLATO is more flexible and lively than in
a written report, but the organizational idea is the same.)

The unit names for the units named ppl, pp2, pp3, were chosen simply to denote
their order. Sometimes, though, you may want to name your units so that
their names reflect the "contents" of the unit instead of (or in addition to)
their "position" in the sequence of lesson materials. Suppose you are teaching
about three animals: lions, tigers, and bears -- and that you have several
units for each of them. You might incorporate an outline structure into the
unit names as shown below.

1.1. lionsl
a. lionsla
b. lionslb

2. lions2

3. lions3
a. lions3a

11.1. tigers].

2. tigers2
a. tigers2a

TILL bearsl
2. bears2

a. bears2a
3. bears3

a. bears3a
b. bears3b
c. bears3c

Just think of yourself as Adam in the Garden of Eden and that you as
an author must remember the names you give your units! You'll do all
right.

6 3

1-15
PP6

Programming Problem 6: Author Branching

In PP5 you studied the commands which provide for branching via student
control. PP6 will illustrate the use of several author branching commands.
The following commands will help solve this problem.

unit

at

jump

do

write

pause

a) In pP5, part a, the -term- command was introduced as a method to skip

a section of lesson code. The -jump- command provides another means
for skipping sections of code. In the code for PP1, place the following

-jump- statement.

unit ppl
jump pp6disp
at 101

Oinsert this line

Now when you finish part b and enter your lesson via -STOP1-, you will
be placed directly into the TUTOR code for PP6.

unit ppl
jump pp6disp
at 101

(path taken when -jump-
command is executed

-NEXT- -NEXT- -NEXT- -NEXT- -NEXT-

pp2 PP3 51;-41 PP5 pp6

b) Create a -unit pp6disp- which, using -at- and -do pp6writ- statements,

places the same complicated writing at 5 different screen positions. To

do this, start a second -unit pp6writ- which contains the complicated
-write- statement (not necessarily long, just subscripts, backspaces, etc. -- like

3
X
2
+ 4X

1
X
2

5X
2
or SO-42)

1

End the -unit pp6disp- with a -pause 10- command followed by a -jump pp6end-

command. Physically locate the -unit pp6end- after -unit pp6writ-.

Create an appropriate display for this unit. A flow chart of the above

is as follows:

pause 10

jump pp6end

pp6writ

6

I-16
PP6

pp6end

PP7

Programming Problem 7: Conditional Sequences

In PP7, conditional forms of TUTOR statements will be studied. The following
commands will help solve this problem.

unit calc next jump

at writec goto

a) The purpose of this section is to construct a unit that -next-ts to
itself four times. The first time the unit is viewed, a message should
be displayed at screen position 1015 that says, "First time for unit
PP7". During succeeding times that the unit is viewed, the following
messages should be displayed two lines lower than the preceding message
(i.e., at 1215, 1415, etc.):

time in unit screen message

first First time for unit PP7
second Second time for unit PP7

fifth Fifth time for unit PP7

To do this start a new unit "pp7set" which initializes
the variables needed for the -at-, -writec-, and -next-
commands. At the end of pp7set, include a -goto-
statement to unit "pp7disp".

In unit "pp7disp", use an -at- command whose tag is
incremented during each passage through the unit.
Also, use a -writec- command to display the different
messages, and a conditional form of the -next- command
to control movement each time the -NEXT- key is pressed.
When the -NEXT- key is pressed while viewing the last
message, the viewer should be taken to unit pp7fin. In

unit pp7fin, -write- an appropriate message to the viewer.

pp7set

Important: For this problem only, the -next- command must be the last
statement in unit "pp7disp". The location of the -next-
statement in this position os important for parts c and d.

1) How many messages are seen at any given moment?

2) How many key presses were required of the viewer for him to see all

the messages?

b) Check your solution to a by looking at PP7 in lesson "ppsoln".

c) Replace the -next- command with a -jump- command. The tag of the -jump-
command should be identical to that of the -next- command it replaces.

1) How many messages are seen at any given moment?

2) How many key presses are required?

3) What is the difference between part a and c?

1-18
PP7

d) Replace the -jump- command with a -goto- command. Again the tag of the

command should not be changed.

1) Row many messages are seen at any given moment?

2) How many key presses are required?

3) What is the difference between part c and d?

e) Take the pptest for PP7.

6 7

Programming Problem 8: Iteration

In PP8 the process of looping or of repeatedly executing the same section of

TUTOR code will be examined.* The iterative -do- command will be used to

set and display several TUTOR variables. The following commands will help

solve this problem. Read about iterative -to- in "tutor".

unit

at

show do calc

write next

a) Copy either (but not both) of the following into a unit called "pp8".

do pp8row,v14-1,64

unit pp8row
at v1+1600

write a

(or) do pp8row,v14-1601,1664

unit pp8row
at vl

write a

b) In unit "pp8" insert a second -do- statement that will display a column

of b's starting at screen location 132. (To do this you will have to

add another unit -- call it "pp8col".)

c) Provide a method for getting from unit "pp8" to a new unit "pp8num". In

this unit do the following:

(1) Use a -do- statement to set the TUTOR variables 26-50 equal to the

numbers 1-25, respectively (i.e., v26=1, v27=2, etc.). Also, after

each variable Has been set, use a -show- statement to show the value

in that variable. Do not use an -at- statement in either unit.

NOTE: To see what your display should look like, see lesson "ppsoln"

in student mode.

(2) Since the single -show- command in part 1 does not present the data

in an easily understandable format, replace that command with a set

of commands that display the contents of v26-v50 in column form:

v26 = XXXX
v27 = XXXX

PLATO screen as seen
in student mode.

Now take the pptest for PP8.

*This is called iterating.

HINT: To display this line you must do the

following:

(a) display a
(b) show the "26"

(c) write an "=" (with spaces)
(d) show the contents of v26.

C

1-20
PP9

Programming Problem 9: Simple Judging

In programming problems 1 through 8 you studied (a) display techniques,
(b) student initiated branching, (c) author branching, and (d) use of
TUTOR variables. The next seven programming problems deal with techniques
used in asking a question and judging simple student responses. In PP9,

you will be given the exact code to type into your lesson.

Start a new -unit pp9arr- and copy the following:

Command Tag

term pp9arr $$Check with your proctor if you don't know -term-.
at 215
write Geography: State of Illinois
arrow 1015

at 510
write What city is the capital ofIllinois?
answer <city,is,the,The> Springfield (Illinois,I11)
write Let us now consider other questions about the

State of Illinois.
no
write Erase your answer and try again.

Try all of these possible answers.

Student responses

a) Springfield, Illinois

b) The city of Springfield, Ill.

c) Springfield is the Illinois city

d) Chicago

e) The Illinois city is Springfield

0 Springfield, Ohio

g) Springfield

h) Illinois

i)* Springfeild, Ill

j)*Spingfield, Illunois

k)*Spingfild, Ilinois

1)*Fieldspring, Noisilli

*misspellings 6 9

Computer's reply

1-21
PP9

Answer these questions by referring to the segment of code above.

Which words in the tag of the -answer- command are to be treated

as synonymous -- that is, interchangeable?

Which word(s) in the tag of the -answer- command are optional

That is, may be present in the student's answer but are not required?

Which word(s) must be present in the student's answer if it is

to be judged ok?

How does PLATO indicate to the student that 1 word is misspelled?

How does PLATO indicate to the student that his word order is wrong?

Remember lessons "ppsoln", "pptest", and "ppcode" are part of the
programming problems.

I-22
PP10

Programming Problem 10: Anticipating Variety in Student Responses
Alternative Forms of a Correct Answer

The following diagram is supposed to represent what your students will see
on the screen. It is your task as an a;.!_"or to write the TUTOR statements
which will display the text and judge the student answers as shown. The
following commands will help solve PP10 and also PP11.

unit arrow answer wrong

at write no

Start a new unit and insert the appropriate code after the unit statement
to place the following question and arrow on the screen. Then generate the
TUTOR code to handle the student answers and computer responses which
appear below.

Simulation of
PLATO screen

The sum of five and three is

Possible student answers and computer's response:

Answer Judgment

a. eight ok

b. 8 ok

c. 15 no
We are working on addition,
not multiplication.

d. fifteen no

We are working on addition,
not multiplication.

e. (any other answer) no

The correct answer is eight.

Now take the pptest for PP10.

7 1

1-23
PP11

Programming Problem 11: Supplying Feedback on Wrong Choices

Start -unit ppll- and add the appropriate code. We suggest using the
.directives "id" and "sd" to form the screen display. The following commands
will help solve PP11.

unit arrow answer write

at no wrOng

Simulation of
PLATO screen

Select the correct answer
by typing its corresponding
letter.

The engine component which acts
as the pivot point for the rocker
arms is the

a) pushrods
b) rocker arm shaft
c) valve lifters
d) valve stem

The five possible responses should be handled as follows:

1-1

1) a no

The pushrod applies a force to the rocker arm causing the rocker arm
to pivot.

2) b ok

3) c no

4) d no

The valve stem moves along with one end of the rocker arm.

5) (anything lse) no

Please select a, b, c, or d for your answer.

1-24
PP11

Go on to the test for PP11 after reading the,following comment.

A Comment on Appropriate Feedback Messages

Notice that some of the students' wrong choices in the above exercise will
result in not only a "no", but also a feedback message. The ideas behind these
feedback messages are to help the student distinguish between the wrong choice
he/she made and the correct choice. Sometimes, this "help" may merely
mean telling the student why he/she was wrong as in the "messages" for
wrong choices la and 4d above. At other times, you as the author will have
to anticipate that the student may not be able to give the correct answer
,after a number of tries at the arrow. This might happen, for example, in an
arithmetical problem requiring the student to calculate an answer or in a
question requiring the student to give a missing word in a sentence or to
identify a particular concept by its definition. In such cases, the student
may, "hang-up" in the lesson and not be able to proceed unless someone tells
him the answer. That someone should be you as the author. Give the student
appropriate feedback so that he/she will eventually be able to arrive at an
answer to any question in the lesson, or at least so that the student may go
through all the arrows in the lesson. One other point should be mentioned
about feedback -- messages which insult, ridicule, etc. the student do not
help the student learn. NEVER INSULT the student!

7 3

1-25
PP12

Programming Problem 12: Phrases in StudrInt Responses

In PP12 you will be given a verbal descripticl of the situation to be
programmed. Your problem will be to gener-.te the code whicb will corzoctly
handle the student answers.

The following commands will solve this problem:

unit answer wrong arrow

at write no

Start a new -unit pp12- and starting at the third line, tenth space write,
"Higher yielding corn is produced by inventing different." Accept student
responses at the fifth line, twentieth space. If the student types an
incorrect response containing the word "homozygous," then write on the
seventh line, tenth space, "It is not possible to improve the yield by
crossing homozygous individuals." The correct answers are "heterozygous
varieties," "heterozygous strains," heterozygous generations," "hybrid
varieties," "hybrid strains," and "hybrid generations." Any other answer
given by the student should be considered as being incorrect and the computer
should reply "Erase your answer and try again." Only one -answer- should
be used.

1-26
PH3

Programming Problem 13: Modifying the Judging Process, the Command

PP13 studies how the answer judging process can be modified by the use of
the -specs- command. Only five tags of the -specs- will be used in this
programming problem. When studying the -specs- command in reference lessons,
notice all of the different judging options which can be changed using the
different tags of the -specs- command. The following commands will help
solve this problem.

unit

at

arrow write

answer specs

Start -unit ppl3spc- and ask the student, "What are the names for the four
years of high school?" (Put in a -next ppl3spc- to allow you to try the unit
several times).

Correct answer: freshman sophomore junior senior

a) Without a -specs- try several responses with the order changed, with
misspellings, extra words, etc. (Use the -EDIT- key to save retyping
the responses).

b) Add a -specs bumpshift-. Try capitalizing the responses. (e.g.,

Freshman, sophomore, juNior, SENIOR).

Changd the -answer- command to -answer freshman Sophomore junior senior-.
What happens?

c) Replace the -answer- command of part b with the -answer- command of part a.
Replace the previous -specs- with -specs noorder-. Try the responses
in different order. (e.g., senior, freshman, junior, sophomore).

d) Replace the previous -specs- with -specs okextra-. Try responding with
extra words. (e.g., the years are freshman, sophomore, junior and senior).

e) Replace the previous -specs- with -specs okspell-. Make spelling errors
in the responses. (e.g., froshman, sophmore, juneor, Senior).

0 Replace the previous -specs- with -specs nookno-. Watch the reply that
is made after judging the student's response.

g) The above five tags of -specs- can be used together for any combination of
effects which are desired. Replace the previous -specs- with one -specs-
command which will display an OK after the following response.

Senior, junior, sophmore, and freshman.

(Note: If there is more than one -specs- command for an -arrow-, only
the tags of the last encountered -specs- command is in effect. However,
a single -specs- command can have several tags and all of them will
remain in effect together until the next -specs- command is encountered).

h) Take the pptest for PP13.
7 5

1-27
PP14

Programming Problem 14: Multiple Questions in One Display

This problem will require a student to answer two different questions on
the same frame (display). The first question will be displayed for the student.
When the first question is answered correctly, the second question will
immediately be displayed for the stident to answer. The general layout
of the display screen is as follows:

question 1

- 7

1 question 2 I

1

L _ _ _ _ _

PLATO display screen

Your task is to generate the code for the following displays. The following

commands will solve this problem.

unit

at

arrow endarrow answer

Write wrong no

Start a new -unit ppl4- and add the appropriate code.

Part 1 Simulation of
PLATO screen

There are two major marking commands in the TJTOR
language. Name these two commands.

7

1-28
PP14

Possible student answers and computer's reply:

Answer Judgment

a) unit and arrow ok

b) arrow and unit ok

c) unit, arrow ok

d) arrow, unit ok

e) (Any other student answer)

The TUTOR commands -unit- and
-arrow- are the major marking
commands.

Part II

After the student answers question one, display the following information
and question in the area designated for question 2.

Note: Use the -endarrow- command to separate the first question (and its
answer-judging commands) from the second arrow (and all commands related
to the second question). ,

'

(Area for first question)
unit and arrow

Type the letter associated with
the minor marking TUTOR command.

a. write d. answer
b. no e. wrong
c. specs f. draw

7 7

1-29
PP14

Possible student answers for part II and computer's reply:

Answer Judgment

a) c ok

b) a,b,d,e, or f no
Not the proper command

c) (any other answer) no

Only a single letter a
through f is a proper
response.

1-30
PP15

Programming Problem 15: Conditional Feedback

In PP15, you will again be given a verbal description of the problem to be
programmed. Your problem again will be to generate the code to properly
handle the specified student answers. The following commands will help
solve this problem.

unit writec wrong endarrow at

write answer calc no arrow

a) Start a new -unit pp15- and ask the student the following question:
"The U.S. Great Lakes system contains lakes (how many?)."
Accept a student's answer two lines below. Accept,student answers of
"five" or "5".

b) When a correct answer has been given, ask the following question: "Of
the five lakes, what is the name of the largest?" Accept either "Superior"
or "Lake Superior" as correct answers. When the first incorrect answer
is given, remind the student that the largest lake is the one that lies
between the Michigan peninsula and Ontario, Canada. If the student
answers incorrectly a second time, tell him that the correct answer
is "Lake Superior."

Hint: For the -writec-, the Universal separator is "micro"

txample: writec n1Otminus$zero$positive

Also: Don't forget to use the -endarrow- command.

c) Take the pptest for PP15.

This is the last programming problem. You may wish to review PP1-14 and/or
the pptests before taking the final exam.

7 9

Appendix II

Examples of the Programming Problem Tests

to accompany the

MTC Author Training Course

The following pages reproduce displays of some of the on-line

tests administered to new authors. The number of the programming

'problem test (PPT) corresponds to the number on a programming problem.

The part of the display with a gray background is computer-generated
.

and hence different for each student. In most of the examples shown,

author responses have been simulated in order to show the type of

feedback given. All of the tests are available on-line in lesson

"pptest".

8 0

c) Given the following TUTOR -at- and -write- statements, how many screen
lines (as seen by the student) will be used during execution in
student mode?

i) at 2220 display 40 characters and spaces. How many screen
lines will the student see?

1 ok

ii) at 2240 display 40 characters and spaces. How many screen
lines will the student see?

2 ok

iii) at 2260 display 40 characters and spaces. How many screen
lines will the student see?

3 no

feedback 12345
67890

12345
67890

12345
67890
12345
67890

The following set of -calc- statements are in a unit:

1. calc 0:44

2.

3. wervol + 2 x

4. v (0)

5. v10 (v3 + 22

6. v (vt + 10) <- v + v10

Of the variables vl to v150, what is the highest numbered variable used?

Of the variables vl to v150, what variable holds the largest value?

ok

What is that value? 40: no

feedback after several The correct answer is
errors

HELP available.

ETT4

Look at the calc sequence again:

1. calc

2. v$ 76,; 1:

3. 44.4 + 2 x vi

4. v .(0) 4= Irr

5. v1O4=v3i+ 22

6. v (4 + 10) + v10

First v3 is set to .5.

Second, vt, and 4 are set to U.

Third, v2 is set to v6 + 2 x vi = 11 + 2 x t = 33.

Fourth, v (0) = v (5) = v5 is set to 11.

Fifth, v10 iJ set to Nr3 + 22 = 5 + 4 = 9.

Finally, v (v1 + = v (a + 10) = vzi

is equal to vl + v19 = 11 + 9: =

The student pressing the -HELP- key on the previous
page is shown this display. One Zine at a time is pointed
to by the arrow and explained in a line of the text.

tS

PPM

This ia a test of the -showt-, -calc-, and -define- commands.

The following commands are part of a unit:

calc v7 4=4_

at 1718

showt

Entcr iTeach character-space box the character which will be displayed
(include blar.:s):

1718

I II 110145 no

feedback Character #8 is wrong.

Press HELP to see correct answer.

11-5
PPT4

If the student presses -HELP-, he sees:

The following commands are part of a unit:

calc v7 4*

at 1718

showt v7,

This is what the filled-in boxes should lookAike:

1718 1718

4,

10 50

There ere 5 characters to the left of the decimal point. The first
3 characters are blanks.

There are 2 characters to the right of the decimAl point.

11-6
PPT5

Assume the following TUTOR code is being executed in student mode.

unit alpha

end

unit beta

help alpha

data_ gamma

unit gamma

back alpha

term G

lab delta

*

unit delta

base

help alpha

Assume the student begins in unit alpha and presses the following key(s).
What unit is the student in (what is his main unit) when he has pressed:

Problem,1 (of 15)

-NEXT-

alpha no

feedback -end- only has an effect when in a HELP-type sequence

Answer with the word "hint" to get a hint.

8 6

11-7
PPT5

Assume the following TUTOR code is being executed in student mode.

unit alpha 4- 4-always start here

end

Unit beta

help alpha

data gamma

unit gamma

ack alpha

term

lab delta

unit delta

base

help alpha

Assume the student 1,7:.'i.ns in unit alpha and presses the following key(s).
What unit is the -.t91ent in (what is his main unit) when-he has pressed:

Prob!,.:,-. 4 (cf 15)

-NEXT-, -HELP-, -BACK-

> hint ...lc

fc.,?(IbaCk pressing -BACK- while in a HELP-type sequence when no -back-
has been specified returns one to the base unit.

Auswer with the word Mint" to get a hint.

II-8
PPT6

The following is a set of TUTOR code:

1. unit one

2. write How are you today?

3. unii: two

4. at 405

5. write Hi there!

6. at 505

After which line should the statement

do two

be inserted so that the student display in unit one will be:

4P5

4-

Hi there!

How are you today?

4 no

eedback 4. An execution error will result if this line of code
is pldced anywhere in unit two becaue of a fatal
-do- lo,:p (a unit canno -do- to itself infinitely).

PPT6

Now look at the following code:

1. unit

2. write

3. do

4. do

5. unit

6. write

7. unit

8. write

9. jump

10. unit

11. write

12. do

13. jump

starts at line 1.

in which unit will the student be when the comp.ter stops executing this
ection of code?

g no

feedbc^k, ',4rong answer again.
Press -DATA- to see the answer by

executing the code.

II-10
PPT6

You have finished test T-PP6.

You made 20 attempts on the 5 questions.

You should practice wing -do- and -jump- commands more.

PPT7

Consider the commands -next-, -goto-, -do-, and -jump- when answering
the following questions.

What command(s) could -xxxx- logically be?

A branch executed via the -xxxx- command(s) will erare the screen.

jump next do no

feedL,ack neither -do- nor -goto- erase the screen

11-12
PPT7

Consider the commands -next-, -goto-, -do-, and -jump- when answering

the following questions.

What command(s) could -xxxx- logically be?

unit unitone

write abc

xxxx unittwo

write def

unit unittwo

> jump next no

feedback With -jump- the -write def- would never get done.

9

11-13
PPT8

Create the proper -do- statement to make a vertical column of
b's at the right-hand edge of the screen as shown. The variable
vl will be used for the -at- value.

unit bee

do loop, vl<=164, 3264 no

unit loop

at vl

write b

Make the first "b" appear at 164.

feedback
The second time through the loop vl will be 165 which is an
illegal value for the -at- command.

f)3

11-14
PPT8

Create the proper -do- statement to make a vertical column of
b's at the right-hand edge of the screen as shown. The variable
vl will be used for the -at- value.

uniL bee

do loop v1<-164 3264,7100A no

unit loop

a t v 1
feedback is response mark-up

write b

Now make the b's be displayed from the bottom up, rather
than from the top down. (like this, press NEXT).

The feedback symt udicate something is missing before the "164"

and that "3264" is out of order and should appear farther to the left.

The student should have placed 113264" before "164."

9

PPT8

Create the proper -do- statement to make a vertical column of
b's at the right-hand edge of the screen as shown. The variable

vl will be used for the -at- value.

unit bee

do loop,v1A164,3264,200

unit loop

at vl

b

Now suppose we changed the -write- command so that it writes
two lines of b's at once (as above). Again create a -do-
statement which will write the vertical string of b's.

feedback
Your answer is all right, but beware: You should have 3164

as the final location to stop the -do- loop. In this case
having 3264 instead of 3164 doesn't hurt, but this type of
mistake can sometimes cause problems.

write b

II-16
PPT8

Now fill in the tag of the -at- command to make the display
shown in the upper right-hand corner of the screen.

unit vertical

do looper,v144,7
a

unit looper 1

at vl x 164 nu

writec vlv,e,r,t,i,c,a,l,

feedback
With that -at- command, you would get these locations:

0, 164, 328, 492, 6:)' , 820, 984, 1148.

You should get 164, 264, 364. 464, 564, 664, 764, 864.

PPT8

Now fill in the tag of the -at- command to make the display
shown in the upper right-hand corner of the screen.

unit vertical

do 1ooper,v144,7
a

unit looper 1

Any mathematicaZ expression
at vl x 100 + 64 no +

which equals 100vZ 164 is
writec vlv,e,r,t,i,c,a,l, counted correct.

feedback
With that -at- command, you would get these locations:

64, ?6/!, 264, 364, 464, 564, 664, 764.

You should get 164, 264, 364, 464, 564, 664, 764, 864.

n /7

11-18
PPM)

During this test, you will be given one question at a time to a total
. of 9 questions. All the questions refer to the code below. If the answer

to a question could be any of a great number of possibilities, then enter
"can't tell." After 3 incorrect answers, the correct answer is displayed.

1. unit tpplO

2. at 510

3. write interesting facts

4. arrow 1215

5. at 1015

6. write What giza mifraz was it?

7. answer (tif,mif,wif)

8. at 1415

9. write zat so mort

10. wrong fram

U. at 1415

12. write got zotz brif?

13. answer tollyus

14. no

15. at 1415

16. write gamit dry aten

Problem 2 (of 9)

student entered

mif

judgment was

9 8

reply was

got zotz brif? no

feedback 4-line 7 is matched

11-19
PPTI1

TUTOR STATEMENTS IN QUESTION

1. unit ppll

2. at 528

3. write TUTOR

4. arrow 1324

5. at 816

6. write -write- is what type of command?

7. answer regular

8. at 1518

9. write Great!

10. wrong judging

11. at 1518

12. write Does a -write- need student input?

Try again.

PPT11 will test the order of execution
of the above code and when things appear
on the screen. Press -DATA- at any time

to run the above code to answer any
question. Watch the flowchart on the

side. This will change as you answer

the. questions.

At which command does the computer start?

unit ok

- unit- is a major marker in TUTOR and
is shown on the flowchart to remind
you it is a. marker.

start

-unit-

c

4-feedback

- DATA- to run above TUTOR code. -HELP- Available.

11-20
PPT13

The test on PP16 consists of 19 questions: 9 in the format below;

10 are multiple choice.
NOTE: You get only one chance at each question.

In this part, the correct answers can be found among the following:
nookno, bumpshift, okextra, noorder, okspell.

GIVEN:

a) the commands... specs [?]

answer congnitive attitudinal psychomotor

and

b) the student response attitudinal,-cognitive, psychomotor

QUESTION:
What single -specs- tag is required to get an "ok" judgment?

2 >okextra no

feedback "nOcirder" NO unique word ORDER is required.

100

II-21.

PPT13

The test on PP13 consists of 19 questions: 9 in the format below;

10 are multiple choice.
NOTE: You get only one chance at each question.

In this part, the correct answers can be found among the following:
nookno, bumpshift, okextra, noorder, OksPell.

GIVEN:

a) the commands...

and

specs [?]

answer multiple choice

b) the student response .4- Multiple Choice

QUESTION:
What single -specs- tag is required to get an "ok" judgment?

1 >noorder no

feedhack "bumpshift" -- BUMP any SHIFT codes.
Capitalization in the response is ignored.

10 :

Rearrange the lines of code on the right so that unit "math" will execute
in the manner you saw. The first five lines of .the uniL are on the left.
Type only the number of the line you ,4ant.'

unit math

calc n104- -1

at 1010

write 2 + 3 = ?

arrow 1016

The student types the number of the
lines he wants next; the computer
moves it over to the left and
crosses it out on the right.

1. no

2. answer 12

3. at 2020

write 3 x 4 = ?

4. calc n104- n10 + 1

5, writec n10,Try again.,

Answr is 5.

6. write Don't add!

---.7T--wrong- 6

8. arrow 2025

9. endarrow

10. wrong 7

11. write Don't multiply!

--12r--answer

You may change your answers later if you wish.
Or press -DATA- if you want to start over.

r-S

1 0

11-23
PPT14

Rearrange the lines of code on the
in the manner you saw. The first

left.

unit math

calc n104:-= -1

at 1010

write 2 + 3 = ?

arrow 1016

right so that unit "math" will execute
five lines of the unit are on the

41.

---37--wteng -6

1. answer 5 47 ne

2. wrong 6 --STanswer-4
3. write Don't multiply! ---67--anewer--la

4. no ---477-wreng

5. calc n10<:= n10 + 1
---87--eale----n10-n10-4.

6. writec n10,Try 97 at 2.020

Answer is 5. ---wtIte---3-x-4--*
7.

8.

at

write

arrow

2020

3 x 4 = ?,

2025

--107--wrItee--nlOrTry-egeln.,

Answer-is-S.

--117--write Denit-add+

9. answer 12 --127--endarrew

10. wrong 7

11. write Don't add!

12. endarrow

There are twelve different
combinations of these
twelve commands which
will produce correct
results. Feedback to
the author is based on the
the ordering he seems to
be trying to achieve.

Line 5 is the first incorrect line.
Press -NEXT- to try again, or:

-DATA- to run the unit correctly.
-LAB- to run the unit as you have assembled it.

11-24
PPT14

The code as you have arranged it is incorrectly ordered. Enter the line

numbers of the code in the correct order. The first five lines of the

unit are on the left.

unit math

calc n104 -1

at 1010 IT-answer 5

write

arrow

2 + 3 = ?

1016

---2T-wreng

3T-write

6

Beelt-maltiply4

answer 5
---4T-ne-

wrong 6 ---5T-eale re10-4..-e10-4-1

write

no

writec

Don't muldply!

n10,Try again.,

Answer is 5.

itee

--write

niOTTry-again ,

Answer-4s4

?

calc

endarrow

at

write

n104--- n10 + 1

2020

3 x 4 = ?

8. arrow

9. answer

10. wrong

11. write

2025

12

7

Don't add!

- -42T -erviarrew

You may change your answers later if you wish.
Or press -DATA- if you want to start over.

104

Appendix III

Lesson "tutor"

1 4 e -

The following pages reproduce some of the displays seen by authors

using the on-line reference lesson, "tutor." To demonstrate its inter-

active characteristics, author responses have been simulated.

III-1
TUTOR

Type the name of the command for which
you wish Co see an explanation.

The commands that can be found in this
lesson are shown now; listed both
alphabetically and functionally.

Press -DATA- for "topics"
(See AIDS on all commands
for further information.)

ALPHABETIC

answer, goto put

ansv help rotate
arrow ignore showt

at inhibit size
back jump specs
bump lab store
calc long subl

circle match term
data mode unit
define next write
do no writec
draw ok wrong
end pause wrongv
erase zero

/////////////////////////////

REGULAR JUDGING

GENERAL DISPLAY CALC'S AUTHOR
BRANCH

STUDENT
BRANCH

I II

unit at calc bump answer
write addl jump next put wrong

arrow writec sub] goto back specs ansv
long showt zero do help wrongv

draw
circle
mode
erase
inhibit
size
rotate
pause

define data
lab

term
end

store

The main display page of "tutor"

III

ok
no
ignore
match

111-2
TUTOR

Press for

a Terminology

Judging

Variables

Expressions

Grid System

Conditional Form

-BACK- index

Pressing -DATA- from the main display page gives a list

of discussions chich apply to many commands.

107

ITTOR

TUTOR Student Variables

Each student has 150 storage locations (called TUTOR
student variables) available for individualization of
his lesson material. These variables are "named" vl, v2,
v3,...v150 (v stands for "variable").

Studnnt variables may be used to store numbers (like 5,
-3.124, or 11739234) or groups of characters (like "John",
or "May 1917").

Any command which uses a numerical value in its tag (such
as -at-) may also use a student variable in the same place.
Since the value of the student variable can be changed
during the 1ea6on (by -calc-, -addl-, -subl-, -zero-, -store-,
or -match- commands), these commands are made much more
powerful.

The value of a variable may be shown on the student's
display by the -sliowt- command. The. -writec- command and
most of the branching commands can use the values_of student
variables to present material in a unique form or order to
.each student.

Press -NEXT- for expressions, -BACK- to return
-DATA- for a detailed explanation of variables
(for those people who wish they didn't have to
study variables, hated math, etc., try -DATA-)

Choosing item "c" on the prev:ous display (p. 1II-2)
gives this explanation. If tie new author presses -DATA-
at th.s display, he will go to a separate lesson which

discusses TUTOR variables in detail.

PRE -REQS]

ansv wrohgv.

"judging" (press -DATA-)
(judging)

I11-4
TUTOR

1E5TE7C-i1 Current judge copy is compared to statement's tag._ If the
student's answer is within the specified tolerance, an
ok judgment is made for an -ansv- command and a *no*
judgment is made for a -wrongv- command.

The tag has two parts. The first part specifies the corrent
answer and the second indicates the acceptable + range. The
following conventions are used when specifying the range value:

TAG

EXAMPLES

range tag: acceptable answers:

a) no tag tolerance of 0, exact match.
b) number author answer (AA) + number
c) (number)% AA + (AA x n%)

unit cor-ans Try the example at the
: left, the.correct answer

is the number 50.
grrow 2845

52 no 4- student selectedansv 50
value

an3v 50,1 fredback close!

write close enough

wrongv 50,5%

write close!

The new author may try various values to test the judging
characteristics of these coamands.

109

111-5
TUTOR

bump
PRE -REQS

EFFECT

TAG

EXAMPLES

NOTES

(judging)

"judging" (press -DATA-)

removes characters from the student's response prior to
attempting a match

a list of characters (10 characters max.)

bump) $$ removes all right parens, spaces, and
dashes (minus sign) before attempting

space
a match

by using bump) all of these responses

abc a) b) c) a-b-c a)-b)-c)

become: abc

1) to bump capitalization, se -specs bumpshift- or capitalize
one of the characters in the tag, for example,

bump)Abc $$ removes: right parens, caps, a, b, c

Continued

III-6
TUTOR

Enter a sample student response and then the tag of the bump command;
The result is what would be available for an attempted match after the
-bump- "operated" on the sample response.

sample response (10 char's max for this lesson) ab
c
dEf ok

student

-bump- tag (10 char's max always) >cA
supplied
input

result b
d
ef

The new author may experiment with various tags and
responses in order to understand some subtleties of this

deceptively simple command.

111-7
TUTOR

writec

PRE -REQS

EFFECT

TAG

"conditional forms" (press -DATA-), -at-, -write-

writes one (1) of several phrases depending upon the value
of the expression

a variable, a comma, then one or more phrases separated by
commas (or other delimiters)

EXAMPLES J at 510

writec vl,to,tootwo

value of variable what is displayed
v 1

negative
0

1

2

3 or greater

to
too
nothing (no spaces either)
two
one space

NOTES I 1) writec vl,abc, $$ abc always written
writec vl,abc $$ abc if nl=neg,else nothing

2) the first character after the expression-identifies the
delimiter to be used. Delimiters may be commas (,) or
semicolons (;), one OR the other. See AIDS for the writec
delimiters ($).

3) multiply line messages may be written if desired by omitting
the delimiter at thP end of a line.

1 1

Continued

III-8
TUTOR

Given the following statements:

at 2005

write The

writec vlcow was, cows were,

writec v2 walking, running,

write to the

writec v3 barn., water because it was

such a hot day.

Enter values for vl, v2, v3 and note the effect.

vl 1 ok

v2 = 2 okl'---student selected values

v3 = 3 ok7

feedback
The cows were running to the water because it was

such a hot day.

-LAB- to exit.

By selecting values for the variables listed, the author

controZs the sentence to be written.

113

111-9
TUTOR

Given the following statements:

at 2005

write The

writec vl cow was, cows were,

writec v2 walking, running,

write to the

writec v3 barn., water because it was

such a hot day.

enter values for vl, v2, v3 and note the effect.

v1 = 1 ok

= 0
\v2 ok---student selected values

v3 = -1 ok'//_

feedback
The cowS were walking to the

-LAB- to exit.

1

match
PRE -REQS

EFFECT

TAG

EXAMPLE

[-arrow-, -writec-] for example

attempts to find in the student's response the first
occurrence of any one of a given list of words

a variable in which to store the result of the attempted
match, a comma, a list of words (separated by commas)
which may occur in the student response.

arrow 3112

match v14,cat,dog,Mouse,house

writec v14,???,cat,dog,Mouse,house

III-10

TUTOR

NOTES' In the example above vl is set to -1 (and "???" will be
written) only if the student's answer contains none of the words
"cat", Pdog",...etc. If the student response contains
the word "cat" anywhere in it, v14 is set to 0 and "cat" is
written. A.response containing "dog" sets 3714 to 1. Below
is an arrow which executes the example above. Try these
examples plus any of your own: "dog", "dog house", "house
dog", "doghousL", "doll house".

The new author may experiment by entering different answers
to see which word the computer finds first.

III-11
TUTOR

lab data help

labl dotal helpi

PRE-REQS -end-

'EFFECT When,a student who is in a unit containing a -lab- command
.

presses -LAB-, he is immediately "jumped" to another unit.
Ditto for -help-, -data-, -labl-, etc.

TAG name of the unit to branch to

EXAMPLES J data dataunit

data moredata

NOTES

CONEENT

-LAB1- means the L-SHIFTED- -LAB- key, -HELP1- and -DATA1-

are similar.
Although the branch that occurs when one of the above keys

is pressed looks similar to a -jump-, there is an important
difference: the student may return to the unit from which he
began branching (called the base unit) in three ways:

1) he presses -NEXT- in a unit which contains an -end-
command, but no -next- command.

2) he presses -BACK- in a unit which contains no -back- command.

3) he presses -BACK1- in a uhit with no -backl- command.

To change the base unit, see -base- in "aids." These commands

are often used in conditional form.
(Press -DATA- to see.how)

Continued

111-12
TUTOR

This moves asC1
the base unit m
changes r

e

1

to

to

'co

DIRECTIONS

restart in unit a
read explanation again
look up another command

unit

write

lab

unit

write

lab

next

unit

write

lab

unit

write

end

unit

write

next

a

a

c

b

d

c

c

d

e

type
type
type

g This moves as
co tke main unit
E
changes

SCREEN

SAMPLE EXERCISES

Beginning in unit a each time, press:

1) -NEXT- 4 or more times
2) -LAB- in 'unit b then several -NEXT-s

3) -LAB- in unit a, then several -NEXT-s
4) -LAB- in a, -LAB- in c, then -NEXT-s
5) -LAB- in b, then -BACK1-
6) -LAB- in a, then -NEXT-, then -BACK1-
7) -LAB- in a, -LAB- in c, then -BACK1-

In the above example, because there is no -back-
command, -BACK- operates like -BACK1-

Normally, the process of student branching involves several

"invisible" changes. This simulation demonstrates the

computer's actions.

117

111-13
TUTOR

long
PRE -REQS

EFFECT

TAG

EXAMPLE

NOTES

COMMENT

"judging" (press -DATA-)

prevents additional student input after a specified number

of characters have been typed

a number specifying how many characters may be typed

long 3

type several keys (watch the screen)

hou student input

1) Since -long- is a "regular" command it must be before

any judge-type commands after the arrow.

2) capitalized characters count as two characters, that is,

a shift () char. and the char. itself

If no -long- is used -long 150- is assumed.

A -long 1- is treated specially: judging is forced

automatically, also a shifted letter (really two char-

acters) can be entered. For forcing judgment of other

-long-s, see -force- in "aids".

The effects of a rather simple command may be seen here.

Appendix IV

Excerpts from "Documented Matching Drill"

Eileen Sweeney

January 23, 1974

What follows are pages from a "documented driver." Shown are the

first page of general directions for use, the first page of programming

(showing two units), a flowchart, and the line-by-line documentation for

the first two units.

IV-1

The following paper is a detailed documentation of a matching routine.

The coding is divided into two parts, each part linked together by a driver

unit consisting of a. series of -join- commands. In the first section, the

student matches two columns of concepts. In the second section, the student's

responses are evaluated and various information is fed back.

The parameters used throughout the routine are set in unit define. Each

author must supply both the number of matches the student is expected to make

and the number of choices the student is given. The remaining parameters are

optional and are turned "on" or "off" by setting them equal to 1 or 0 respective-

ly. The first option (ansall) enables the author to force the student (by set-

ting ozsall equal to 1) to fill in all the matches before the sequence is eval-

,tated. If ansaZZ equals 0 ("off"), the student's responses may be evaluated at

any time. The author must also set the evaluation options to 0 or 1. These

options are .9hwper (the percentage correct), shwrong (show the student's incor-

rect responses), shwrght (show the correct response for each incorrect student

response). Any or all of these options may be turned on or off. The author

must also supply the correct series of responses in the tag of the -pack- command.

Finally, the author should fill in the columns of concepts the student must

match, and state the relationship between the two columns.

A number of instructional guidelines should be considered when writing the

matching lists. State clearly the relationship between the two lists (i.e., tool

to machine, part to function, etc.) Be sure and show only one relationship in

any one matching drill. For example,

strong skunk

Hercules

whiSkey

presents a variety of types of strength (physical strength, odor, taste). Remember,

too, that the relationship implies a consistent grammatical structure within each

list. Use more "answers" than "questions", and, wherever possible, use the same

answer twice (remembering to tell the student answers may be used more than once).

In these ways the drills will be more difficult and the grading more reliable.

Students must weigh each question separately without using a "process of elimina-

tion." Finally, avoid "question" lists of more than 10 or 12 items, or mnre

than 16 "answers". Longer matching drills are better broken into smaller pieces

with a "breather" in between.

120

unit clefine
4r,

inhibit

ro

define

erase
n1,14
tempans=n1
quesno=n2
matches=n3
choices=n4
arowloc=n5
score=n6
ansall=n7
whper=r1B

shwrong=n9
shwrght=n10

$$tomporary storaye for student answer
$$question number
$$number of matches student will make
S$number of choices student has fur matc
$$screen location of judging arrow
$$total number of correct responses
$$(opt.)all questions must be answelerl
$$(opt.)show percentage correct answers
$$(opt.)show student's wrong answers
$$(opt.)show correct answer

whichu=n11 S$stores number of last unit entered
times=n12 $$counts times through unit
seyment,authans=n13,6 $$storage for author answers

segment,stuans=n14,6 $$storage for student answers

calc arow1oc4-602

matches-1-B

choices4-12

shwper4-1

shwrong4-1

shwrght4-1

pack n13,abcdefgh
write <at,107>This is a matching test on (state relation-

ship between two columns). Some items may be used
more than once. When you have finished, prest -DATA-.
and the test will be evaluated.

at 710

jump testing

unit testing
inhibit erase

join cleanup

join set
join quesno=matches+1,reset,x
join test
jump testing

121

A)

B)

C)

D)

E)

F)

G)

H)

I)

K)

L)

1
'L

DEFINE

TESTING

(DRIVER)

111..11

CLEANUP SET

GRADING

(DRIVER)

TEST

DATA

CHECK

RESET

ALLFILL

ASSIGN SCORE RONG P RCENT

1/

IV-4

The following routine is divided into two parts. In the first part, the

student matches two columns of concepts. In the second part, the student's

answers are evaluated and various information is fed back depending on author

specifications.

In the context of this documentation, all variable names will be italicized,

all unit names (not already preceded by the word "unit") will be in quotation

marks, and all commands will be in hyphens. Since each command is documented

only with regard to its specific use in this routine, specific functions might

not hold true in other contexts.

unit define

1. -inhibit- prevents the current display from being erased when a main
unit is encountered.

Normally, the system erases the screen each time the main unit is
changed (by a key press, -jump-, etc.). If the author wants a display
to remain on the screen, he/she must place an -inhibit- erase in the
unit in which the display is first executed, usually at the beginning
of the unit. The -inhibit- effect is not permanent, and will only work
the first time a new unit is encountered. After that, the system will

resume normal erasing.

2. -zero- sets variables n1 through n14 equal to zero.

This insures that all variables used in the routine are equal to

zero when the first unit is entered.

3. -define- gives meaningful names to variables n1 through n12.

When variables are identified by number (nl, n2, n35, etc.) it can
be difficult to remember what information is stored in which variables.
Therefore, an author can give each variable a more meaningful name, just
as a parent gives a child a spedific name (rather than childl, child2,

child3, etc.). These new names may be used in any tag, expression, cal-
culation, etc. in place of the numerical name. For example, in this

context

calc quesno4

is exactly the same as

calc n24-0

the only difference being that the name quesno has more meaning for the
author than the name n1.

Variables act as storage containers for information. If the author
wishes to keep track of the number of times a student performs a certain
task, the number of correct responses, the position of an arrow--any type

124

of information--the author designates certain variables as storage

bins for the information. The author, however, has a number of

choices as to how the information should be stored.

Imagine that you have 10 books and 10 boxes in which to store

them. Each individual box is large enough to hold all 10 books. You

might choose to put 1 book in each box and pack the leftover space in

' each box with bits of crumpled paper. However, to make maximum use of

space, you might decide to put all 10 books in 1 box. An author may

also choose the way in which the system will store information.

All data on the PLATO system is reduced to a series of zeros and
ones, (binary notation) regardless of whether the data is a single

number or character, or a string of numbers or characters. For example,

the following data would be converted and stored thusly;

1 = 000001
12 = 001100
t = 010100

the = 010100001000000101

The smallest unit of conputer storage is called a bit, just as the
smallest whole unit of length is called an inch. Each bit contains a

0 or 1. Just as inches can be grouped and expressed in different, yet
equivalent units, so bits can be grouped and expressed in different
units. Just as inches can be converted to feet or yards, bits can be

converted to characters or words.

36 inches = 3 feet = 1 yard
60 bits = 10 characters = 1 word

1 2 3

1 word

10 charfcters

5 I 6 I 7 8 9 10
,

- 6 't IC C ''Ct04:.10

1

i
1 i

I 1

1

cK, hdA
1111

.g, "', -00.00 c,,

Hill 1 i
I

12 18 I 24 30 36 42

60 bits

figure 1

48 54 60

On the TUTOR system there are 9,000 bits available to an author for
storage purposes. Since an author would have difficulty keeping track of
9,000 bits, these bits are grouped such that every group (array) of 60
bits is a neat package called a variable and is given a numerical name
(nl, vI4, n37, v142, etc.) Thus, variable names are actually names for
a specific group (array) of bits which will always number 60,

Recall the analogy of the books stored in boxes. A similar situa-
tion exists when storing information on PLATO. An author can store 1
piece of information in each variable. However, if each yiece of infor-
mation is small (perhaps 1 character -6 bits- in length), a large number

1 2 -3

IV-6

of bits are left over. For example, in this routine we are storing
student responses consisting of 1 letter each, requiring 1 character
(6 bits) of storage. If each response were stored in a separate vari-
able, each variable would have 54 unused bits filled with zeros.

A more efficient means of storage would be to store each response
in a successive group of bits (rather than a successive group of vari-
ables). Figures 2 and 3 illustrate this effect. (The actual charac-

ter is used hert rather than the binary equivalent. Remember, however,

that each character is actually a series of zeros and ones.)

f elf primpm

figure 2

mrumgpvi DWI
. h 6 6

hINII6=1161M6 6 6 I r,

asi11111110111N0
111111.

rmINIEM,1sis G I,

1111111111111 1111111
4INIVINEWANiliirlingf 6 6 6 ft

figure 3

In figure 1, 6 variables are partially used, while in figure 2
only 6 characters are used. Recall that each variable is an array
(group) of bits, arbitrarily set at 60 (10 characters, 6 bits per
character) and named nl, n2, v14, etc. The -segment- feature en-
ables an author to redefine his/her own array of bits and store
information into successive bit groups (rather than successive whole
varitUlts).

define segment,authans=n13,6/
array name starting length of each

location bit-group

The preceding -define- tells the system that,.rather than storing
data in groups of 60 bits (whole variables),- bit segments of 6 bits
each will be'used, that the starting location will be the left most
bit in n13, and that when all the necessary data is collected the
total array of bits will be called authans. Thus, the system stores

data in every 6 bit group starting at n13. When authans is referred
to throughout the lesson, it will be necessary, to specify which' segment

2 6

IV-7

of bits in authans is being referred to since each segment will con-
tain a different piece of information.

authans

start at
n 13

(1) (2) (3)

.

(4) (5) (6)
I

(7) i (8)
I

(9) (10)

(11) (12) (13) (14)

..

...

gure

In figure 4, 14 pieces of information were collected. These

14 groups of bits are called authans and can be referenced as
authan8(1), authans(5), authan8(13), etc. In our routine we refer

to authans(quesno). Since we are keeping track of the question num-
ber in quesno, the system would simply look at the value in quesno
and refer to that group of bits in authans. For example, if the

f current question number is 4, the value in quesno is 4 and authan
(quesno) refers to the fourth 6 bit segment of authans.

Note that n13 is only meaningful as a point at which the sys-
tem should start segmenting groups of bits. The name authans is not
intended to replace the name n13, and the 2 names are not interchang-
able (as they would be under a regular -define-). Just as n52 is
.the name for a specific array of bits 60 bits long, authans is the
name for a specific arra: of bits of indeterminant length.

The second -segment- is identical to the first. It is the place
at which student responses are stored in 6 bit segments, beginning
at the left most bit in n14, and named stuans for future reference.

4. -calc- gives specific numerical values to the variables in the tag.

These%values are set by each author according to the specific
needs of his/her lesson. Note that the last 4 variables are set to
1 or 0. These are options the author may turn on (1) or off (0).

5. -pack- stores the character string "abcdefgh" in n13, beginning at
the left most bit.

The character string represents the author's answers for the
matching routine. Each author should, substitute his/her own answers.
Note that the variable in the first part of the tag (n13) is really
the,starting location for authans. Thus, authans now cantains the

chier string "abcdefgh". Because of the peculiarities of the
-pack- command, the segmented variable name authans cannot be used
in the -pack- tag. Everywhere else, however, authans will be used.

6. -write- tells the system to display material on the student's screen.

This displays .the two matching lists on the student's screen.
Because of the -inhibit- erase, this display will remain on the screen
the first time a new main unit is encountered.

Appendix V

Summary of TUTOR Training Materials Available -- January 1976

128

V-1

1. The MTC basic TUTOR training package consists of interleaved hard-

copy explanations and exercises (15) coordinated with the on-line

materials "teach", the "tutor" series, the "pptest" teries, "ppcode",

"ppsoln", "display", "variables", and the "computer" series. A total of

43 commands are described in "tutor", 40 are explained in hardcopy,

and 28 are used in the exercises. The materials were designed to be

only very basic and to be understood by an audience with weak mathematics

backgrounds. Authors typically spend from 5-7 working days from the

time they arrive at CERL until they complete the 15 exercises. As

noted above, topics other than TUTOR are also being taught during

this period.

In addition, the following materials were created and are used

for advanced TUTOR training: "execute", "datacollct", the random

arrow drill driver, and the matching test driver.

2. The PSO Introduction to TUTOR is a two-part manual. The first

part of the manual interleaves comparatively long (relative to the

MTC package) sections of reading with six short sets of exercises. The

exercises require the author to copy into his lesson space pre-specified

passages of TUTOR coding, then try out the product. The PSO manual

thus takes an example-presenting approach rather than MTC's problem-

solving approach. The first seven sections, roughly the first part of

the manual, are accompanied by on-line reading in lesson "introtutor",

which further describes commands and provides working'examples of them.

The manual also offers student mode versions of the exercises from the

manual. The latter is not exactly analogous to "ppsoln", in that there

are no problems to be solved by the new author using the PSO manual.

V-2

This package uses the "conventional" order of teaching commands;

answer judging is introduced immediately.

The second part of the manual contains readings without on-line

examples or student mode versions of the exercises. The manual contains

nore than a dozen appendices as well as an alphabetical index. No

tests are provided in the manual or in "introtutor". The use of the

'TUTOR editor is discussed in an appendix of the manual; there are no

exercises or practice available. There are no command simulators analo-

gous to "tutor", but "introtutor" provides many working examples.

Compzlred to the MTC materials, the PSO package covers more commands

(60-70) in the same or greater depth with fewer exercises and less

-.esting. The average completion time for the manual is about ten working

days for authors not currently attending or teaching higher education.

Authors at the ARPA/PLATO sites where the authoring staff was chosen

fr,,Ta the regular technical training instructor staff could not under-

stand the PSO materials sufficiently well. At other ARPA/PLATO sites

(which Used either graduate students or experienced CBE staff as authors),

the PSO package could have been used.

3. Sherwood's The TUTOR Language is by far the most complete and

thorough manual which attempts to teach TUTOR. It is extremely well-

knit and manages to convey a vast amount of information quite concisely.

However, it is designed to be used by someone who is already familiar

with the basics of editing and authoring. It is not a manual for a user

with less than six month's experience who lacks a computer or mathematical

background. The MTC group has frequently used the Sherwood manual for

advanced self-directed training, but has'found only a few authors for.

V-3

whom this manual was suitable as a first course. The book contains no

on-line materials. It is indexed and contains a few short appendices.

This manual's strengths include careful comparisons and contrasts

between similar commands and clever, but useful examples. Furthermore,

in many cases, details of the system architecture are related to the form

and suggested use of commands.

4. Silas Warner's "introedit" program is the only author mode simulation

with which the MTC group has obtained success. Unfortunately, it became

available only near the end of the training schedule of ARPA/PLATO

sites and was not carefully evaluated. This lesson teaches only basic

editing, as does "teach", but is quite thorough. Its apparent success

in an area where others have failed is probably the result of the

constant implicit and explicit cues that remind the new author that

this lesson is a simulation of the real TUTOR editor.

Appendix VI

The Use of Indexed Variables by Authors

132

VI-I

The extent of use of powerful programming techniques is difficult

to determine precisely without spending a great deal of time care-

fully examining many programs. Furthermore, if the programming is not

carefully documented, the analysis may consume more time than was

spent to create the code. A comprehension test can demonstrate that an

author understands a particular programming technique or possibly

even that he can use it; it does not indicate that he actually uses

the technique, however. Finally, true mastery of a concept is more

reliably and usefully demonstrated by the actual implementation of

the concept.

In order to estimate the level of usage of the calculational

portions of the PLATO system by ARPA authors, we chose to count the

occurrences of indexing, a powerful, general programming technique.

A non-indexed variable contains a number useful to the program; an

indexed variable contains a number which specifies the location of

a number useful to the program. Use of a variable as an index (as a

"pointer") is necessary for a whole host of operations which may be

found within instructional lessons employing complex strategies (drill

paradigms, simulations, etc.) and for a broad range of tasks unrelated

to lesson strategies (recording successive answers, displaying and judging

computer-generated questions, etc.). Indexed variables are also vir-

tually mandated by many non-instructional uses: information storage

and retrieval, student routing, data management programs.

Any use of indexed variables requires the author to conform t

formats which allow a computer-search of the lesson to quickly identify

3

VI-2

the type of use and frequency of occurrence. Several other calculational

features possess this "computer-searchable" aspect, but few seem so

generally necessary for a variety of useful tasks. For example, use

of matrices and arrays implies sophistication with calculational

"
features, but absence of such use does not imply computational naivete.

Other features are so new that "old" lessons could not be compared on

an equal basis. Finally, features such as "looping" can be implemented in

so many different ways that analysis-by-search is impractical. Indexed

variables (or the concept of pointers) can be implemented in two ways:

explicitly (and unambiguously) or coincidentally with the "segment"

feature. Since segments are also used to save space or to permit bit

manipulation, their presence may or may not imply the same things that

indexed variables do. For that reason, both forms of implementation are

enumerated separately below. A third, highly complex method of imple-

menting the concept of indexing with other commands and syntaxes was not

found.

It must be realized that the presence or absence of indexed variables

in a lesson is probably quite unrelated to its educational effectiveness.'

All that can be concluded is that a lesson without indexed variables

cannot perform a set of operations which MIGHT be useful instructionally.

With these caveats, the following data is presented. It was

gathered by searching instructional lessons for the strings "nc(",

"vc(" "n(", "v(", and "segment,". Named segments found were then

used as search targets. For example, if a segment named."time" was

found, a search for the string "time(" was made. The computer search

retrieved the whole TUTOR statement containing the potential example

V I- 3

of indexing. if true indexing was indicated (e.g., "time(n10)" rather

than "timean the line was counted. No line was counted more than once

no matter how many examples of indexing it contained. No data management

or routing lessons were examined. In both Chanute and Sheppard lessons

the indexed variables used in a one-per-lesson, standardized data collec-

tion routine were not counted. Thus, within the limits of the searching

techniques, the counts of use of indexed variables below reflects their

use for instruction.

Explicitly Defined Indexing--e.g., n(n10)

Total Lessons w/ Total # % Lessons Commands
lessons explicitly commands with per

Site checked indx vars found indx vars lesson

Chanute 39 5 6 13% 1.2

Aberdeen 24 8 46 33% 5.8

Sheppard 71 19 90 28% 4.7

Indexing by Means of Segments--e.g., time(n10)

Site

Total
lessons
checked

Lessons w/
segmented
indx vars

Total #
commands

found

% Lessons
with

indx vars

Commands
per

lesson

Chanute 39 37 many 95% many

Chanutea 39 10 44 26% 1.1

Aberdeen 24 3 45 12% 2.1

Sheppard 50 16 130 32% 8.1

aThis entry ignores indexed variables which were present only in
data collection and matching test routines. In general, these routines
were not created by the author of the lesson, hut rather were the work
of two or three authors with specialized roles. Hence it seems a more
valid assessment of how widespread among authors was the use of indexed
variables.

Appendix VII

Training Standards for Basic TUTOR

This appendix contains a partial list of objectives for six topics

which a new author can be expected to attain during basic TUTOR training.

Also included is an estimate of the inter-quartile range for the authors

described in Table 1 in the body of this report.

VII -1

Editing

Prerequisites--A PLATO demonstration and one-half hour or more

student mode experience.

Using only PLATO-supplied help, an author, given the name of an

empty lesson, will 1) sign on; 2) fill out the lesson data page; 3) create

a new block; 4) type in, with correct tabulation, a supplied piece .of

coding; 5) execute that code as a student; 6) return to author mode to

delete and replace pre-specified lines. False attempts are permitted but

the,task must be completed within 5 minutes.

Time estimate: 3-9 hours.

Display

Prerequisite--Editing

Given a display that can be created with 30 -circle- (including

arcs), -size-, -rotate-, -write-, -at-, and -draw- commands, the author

will produce a reasonable facsimile of the display within 3b minutes.

The copy shall be faithful to the original with a tolerance of 16 dots

(.25") for each point.

Given a location on the plasma panel, the author will give its

position in course grid (±25 dots) 75% of the time.

Time estimate: 2-3 hours.

Calculation

Prerequisite--Display

Given a series of sequentially (i.e., linearly) executed -calc-

commands (including *, +, -, multiple assignments, on-level deep

indexed variables), the author will correctly predict the value of 90%

VII -2

of the calculations.

Given a series of desired outcomes paired with arithmetic

conditions, the author will construct a conditional command to select

the outcomes with 100% accuracy.

Given a series of numerical values to be displayed in various

formats, the author will correctly describe the output for 80% of the

cases.

Time estimate: 1-12 hours.

i.e., Not logical (>, =, and, etc.) conditions, but arithmetic

(if condition = 1, do this; if 2, do that;. . .).

Looping

Prerequisite--Calculation and Branching

Given displays which can be iteratively generated by means of one

-do- loop controlling one display command, the author will provide

the coding necessary to produce the displays. The author will be allowed

three attempts to solve each problem.

Time estimate: 1-6 hours.

Branching

Prerequisite--Display

Given: -next-, -help-, -goto-, -jump-, -do-, and -term-, the author

will identify those commands and keys which 1) begin a new main unit,

2) erase the screen, 3) create a base unit, 4) interrupt linear execution

order 5) provide some sort of automatic return from the branch.

Given a list of branching commands that provide some sort of automatic

return, the author will specify the conditions and nature of the

VIi -3

return.

Given a program listing for a lesson containing 10 or fewer units

and only the student- and author-controlled branching commands -next-,

-back-, -help-,.-end-, -do- (non-looping), -jump-, and -goto-, plus a

-write- command to display the name of each unit, the author will predict

with 80% accuracy the displays produced by pressing various sequences

of function keys.

Time estimate: 3-9 hours.

Ju4ing,

Prerequisites--Display and experience with sequential order of

command execution.

Given samples of acceptable and unacceptable student responses

(with appropriate feedback for each), the author will generate coding

to judge each response correctly and provide the corresponding feedback.

Some of the responses shall require -specs- options to work efficiently.

The resultant coding will provide accurate feedback and response markup

in 90% of the cases.

Time estimate: 5-16 hours.

